• Title/Summary/Keyword: total strain energy density

Search Result 28, Processing Time 0.023 seconds

Correlation Between Fatigue Life of 2.2Ni-0.1Cr-0.5Mo Steel Accompanying Mean Stresses with Cyclic Strain Energy Density (평균응력을 동반하는 2.2Ni-lCr-0.5Mo강의 피로수명과 변형률에너지 밀도와의 상관관계)

  • Koh, Seung-Kee;Ha, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.167-174
    • /
    • 2003
  • Fatigue damage of 2.2Ni-1Cr-0.5Mo steel used fir high strength pressure tubes and vessels was evaluated using uniaxial specimens subjected to strain-controlled fatigue loading. Based on the fatigue test results from different strain ratios of -2. -i 0, 0.5, 0.75, the fatigue damage of the steel was represented by using a cyclic strain energy density. Mean stress relaxation depended on the magnitude of the applied strain amplitude. The high pressure vessel steel exhibited the cyclic softening behavior. Total strain energy density consisting of the plastic strain energy density and the elastic tensile strain energy density described fairly well the fatigue life of the steel, taking the mean stress effects into account. Compared to other fatigue damage parameters, fatigue life prediction by the cyclic strain energy density showed a good correlation with the experimental fatigue lift within a factor of 3.

Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density (전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측)

  • Kim, Jae-Hoon;Kim, Duck-Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

Prediction of Low Cycle Fatigue Life for Inconel 617 using Strain Energy Method (변형률 에너지법을 이용한 Inconel 617의 저주기피로 수명 예측)

  • Kim, Duck-Hoi;Kim, Ki-Gwang;Kim, Jae-Hoon;Lee, Young-Shin;Park, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.285-290
    • /
    • 2004
  • Low cycle fatigue tests are performed on the Inconel 617 that be used for a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress (Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구)

  • Hong, Sang-Hyuk;Hong, Chun-Hyi;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

Prediction of low cycle fatigue life for Inconel 617 (Inconel 617의 저주기피로 수명 예측)

  • Kim K.G.;Kim D.H.;Kim J.H.;Lee Y.S.;Paik W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.612-615
    • /
    • 2005
  • Low cycle fatigue tests are performed on the Incollel 617 that be used fur a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Mansun method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

Pin Pull Characteristics of Pin Lead with Variation of Mechanical Properties of Pin Lead in PGA (Pin Grid Array) Package (PGA (Pin Grid Array) 패키지의 Lead Pin의 기계적 특성에 따른 Pin Pull 거동 특성 해석)

  • Cho, Seung-Hyun;Choi, Jin-Won;Park, Gyun-Myoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • In this study, von Mises stress and total strain energy density characteristics of lead pin in PGA (Pin Grid Array) packages have been calculated by using the FEM (Finite Element Method). FEM computation is carried out with various heat treatment conditions of lead pin material under $20^{\circ}$ bending and 50 mm tension condition. Results show that von Mises stress locally concentrated on lead pin corners and interface between lead pin head and solder. von Mises stress and total strain energy density decrease as heat treatment temperature of lead pin increases. Also, round shaped corner of lead pin decreases both von Mises stress and total strain energy density on interface between lead pin head and solder. This means that PGA package reliability can be improved by changing the mechanical property of lead pin through heat treatment. This has been known that solder fatigue life decreases as total strain energy density of solder increases. Therefore, it is recommended that both optimized lead pin shape and optimized material property with high lead pin heat treatment temperature determine better PGA package reliability.

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.

Theoretical Considerations on Effect of Environments on Strain Hardening

  • Lee, Byoung-Whie
    • Nuclear Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.21-31
    • /
    • 1971
  • The part of the work of plastic deformation of metal goes into the changes in the total surface free energy. This contribution is dependent on the specific surface free energy, which is affected by the environment. Based on thermodynamical approach, volume constancy requirement and adsorption induced two distinct dislocation interaction mechanisms for strengthening or weakening of metals at surface, theoretical derivation has been made to show that the environmental contribution on the strain hardening, the stress and the energy required for plastic deformation can be expressed in terms of solid surface tension in vacuum (${\gamma}$$_{s}$), interfacial tension (${\gamma}$$_{se}$ ), surface dislocation density ($\rho$$_{s}$), internal dislocation density ($\rho$$_{i}$) and fraction of surface site uncoverage (f). On the basis of theoretical derivation, the various mechanical behaviours under different environments are predicted.d.d.

  • PDF

Low Cycle Fatigue Behavior of Cobalt-Base Superalloy ECY768 at Elevated Temperature (코발트기 초내열합금 ECY768의 고온 저주기피로 거동)

  • Yang, Ho-Young;Kim, Jae-Hoon;Ha, Jae-Suk;Yoo, Keun-Bong;Lee, Gi-Chun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.18-22
    • /
    • 2013
  • The Co-base super heat resisting alloy ECY768 is employed in gas turbine because of its high temperature strength and oxidation resistance. The prediction of fatigue life for superalloy is important for improving the efficiency. In this paper, low cycle fatigue tests are performed as variables of total strain range and temperature. The relations between strain energy density and number of cycle to failure are examined in order to predict the low cycle fatigue life of ECY768 super alloy. The lives predicted by strain energy methods are found to coincide with experimental data and results obtained from the Coffin-Manson method. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

Surface Strain Effects on the Adsorption of Au Adatoms on MgO(001) Surfaces with Surface O Vacancies

  • Jeon, Junjin;Park, Jinwoo;Yu, Byung Deok
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1324-1328
    • /
    • 2018
  • By employing ab-initio total-energy and electronic-structure calculations based on the density-functional theory, we studied the effects of surface strain ${\varepsilon}_s$ on the adsorption properties of a Au adatom on defective MgO(001) surfaces with surface oxygen vacancies ($F_s$ centers). The formation energy of the $F_s$ center on MgO(001) varied very slightly in the region of ${\varepsilon}_s$ from -6% to -4% and monotonically decreased with the increase in ${\varepsilon}_s$, from -4% to +6%. As ${\varepsilon}_s$ increased, the adsorption energy ($E^{Fs}_{ads}$) of Au on the $F_s$ center of strained MgO(001) monotonically decreased and, in particular, showed a much larger decrease in $E^{Fs}_{ads}$ for a tensile surface strain of ${\varepsilon}_s$ > +4%. The surface strain dependence on the physical properties, such as the charge states, the spatial charge rearrangement, for Au on the $F_s$ center of strained MgO(001) surfaces was also analyzed. These results provide important physical information on the effects of surface strain on the adsorption of Au on MgO(001) surfaces with $F_s$ centers.