• Title/Summary/Keyword: total maximum daily load (TMDL)

Search Result 88, Processing Time 0.28 seconds

Determination of Detention Basin Size for NPS Control in TMDL Area (수질오염총량관리제하에서 친환경 개발사업을 위한 자연형 비점저감시설의 규모 산정)

  • Jung, Yong-Jun;Lee, Eun-Ju;Lee, So-Young;Lim, Keong-Ho;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Since 2000, environmental policies and regulations in Korea are rapidly changing to TMDL(Total Maximum Daily Load) and nonpoint source control. This is due to bad water quality in drinking water sources. Although many environmental facilities having high removal efficiency are constructed and applied in nationwide for controling various pollutants from wastewaters, the water quality in rivers is worse and worse because of nonpoint pollution. In fact, TMDL is a new environmental regulation controling total daily loadings from watershed areas. Actually, the nonpoint pollutant is originated from various landuses and its control is based on TMDL regulation. Therefore, this research is performed to determine the size of detention basin to control nonpoint pollutants from resort developing areas. The detention basin is one of best management practices, which is useful for controling pollutants and flooding from the developing areas. However, it should be designed and constructed with cost effective method. Recent 10 years rainfall data are used to determine the size of detention basin. The cost effective size is determined to 7.4mm accumulated rainfall.

  • PDF

Characteristics of Non-point Pollutant from Highway Toll Gate Landuse (고속도로 영업소지역에서의 비점오염물질 유출특성)

  • Lee, Eun-Ju;Son, Hyun-Geun;Kang, Hee-Man;Kim, Lee-Hyung
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.185-192
    • /
    • 2007
  • Newly constructed road is a requisite to be able to carry out BMPs (Best Management Practices) under TMDL(Total Maximum Daily Load) program of the Ministry of Environment. BMPs require pollutant source control during road construction and wash off reduction plan as well as maintenance practices subsequent to construction on the purpose of discharging the minimum wash off non-point source pollutants. The objective of this study is to provide supportive discharged data in evaluating the discharged non-point pollutant load from a highway toll gate area. It can be applied to manage non-point source pollutants on roads. The results validate the first flush phenomenon that it is known to be one of the wash off characteristics in paved area. In addition, the load per unit area and load per unit rainfall duration applying EMC are calculated. The mean load per unit rainfall duration is assessed to be $533.7mg/m^2-hr$ for TSS, $396.2mg/m^2-hr$ for COD, $17.0mg/m^2-hr$ for TN, and $4.8mg/m^2-hr$ for TP. These results show the unitload taken from monitoring are higher than the unit load suggested in the TMDL. It is important to adopt real pollutant unit for road to be able to perform BMP successfully.

  • PDF

Tracing Water Pollution Source using FDC and Exceedance Rate in Cheongmicheon Watershed (FDC 및 초과율을 이용한 청미천 유역에서의 오염원 추적)

  • Kim, Yeon-Su;Kim, Sang-Ho;Lee, Chang-Hee
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.136-144
    • /
    • 2018
  • The Ministry of the Environment conducts a water environment management plan and TMDL(Total Maximum Daily Load) for integrated watershed management, and determines whether the target water quality is achieved using water quality monitoring data. The concentration of monitoring points located in the downstream of the watershed is the outcome of complicated mechanisms such as influx of pollutants from the tributaries of the watershed and self-purification of river water. The purpose of this study is to analyze the effect of main stream and tributary water quality on the target water quality point using the water pollution source tracking and exceedance rate of watershed. In this study, FDC and exceedance rate analysis were performed on six water quality items including BOD and T-P, which are the targets of TMDL. Water quality items and points affecting the target water quality point were derived from flow rate. In this study, the pollution source tracking through FDC analysis and exceedance rate analysis will be able to establish more efficiently the water quality management strategy for each branch to achieve the target water quality.

A Study on the Estimation Methods of Nonpoint Pollutant Unit Load - Focus on Nonpoint Pollutant Unit Load in Paddy Field - (비점오염 발생 원단위 산정방법에 대한 고찰 - 논 비점오염 원단위를 중심으로 -)

  • Choi, DongHo;Choi, Soon-Kun;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung Chang;Yeob, So-Jin;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In order to preserve water environment, Total Maximum Daily Load(TMDL) is used to manage the total amount of pollutant from various sources, and the annual average load of source is calculated by the unit load method. Determination of the unit load requires reliable data accumulation and analysis based on a reasonable estimation method. In this study, we propose a revised unit load estimation method by analyzing the unit load calculation procedure of National Institute of Environment Research(NIER) method. Both methods were tested using observed runoff ratio and water quality data of rice paddy fields. The estimated values with the respective NIER and revised NIER methods were highly correlated each other. However, the Event Mean Concentration(EMC) and the runoff ratio considered in the NIER method appeared to be influenced by rainfall classes, and the difference in unit load increases as the runoff and EMC increase. The error can be further increased when the EMC and runoff ratio are changed according to changes in rainfall patterns by climate change and change of agricultural activities. Therefore, it is recommended to calculate unit load by applying the revised NIER method reflecting the non point pollution runoff characteristics for different rainfall classes.

Improvement on Management of Non-point Source Pollution for Reasonable Implementation of TMDL - Focusing on Selection of Non-point Source Pollution Management Region and Management of Non-point Source Pollutant - (수질오염총량관리제의 합리적인 시행을 위한 비점오염원관리 개선방안 - 비점오염원 관리지역 선정 및 비점오염물질 관리를 중심으로 -)

  • Yi, Sang-Jin;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.719-723
    • /
    • 2014
  • For effective implementation of total maximum daily load (TMDL), this study presented the improving plans of non-point source pollution management including the classification of non-point source pollution, calculation of non-point source pollution load (generated, discharged), selection of non-point source pollution management regions and management of non-point source pollutant. First of all, the definition of point source pollution and non-point source pollution based on the legal and scientific viewpoint should be precisely classified and managed. Especially, the forest, grassland and river without occurrence of environmental damage by activity of business and human should be separately classified natural background pollutants. The unit for generated and discharged non-point source pollution should be preferentially changed according to actual condition of watershed. The calculation methods of generated and discharged non-point source pollution should be corrected consideration on the amount and duration of rainfall. While the TMDL is implemented, non-point source pollution management regions should be selected in the watersheds exceed the targeted water quality standards by the rainfall. The non-point source pollution management regions should be selected in the minimal regions where have high values of discharged non-point source pollution density in the urban area, farmland and site area except forest, grassland in the whole watershed. The non-point source pollutant treatment facilities, which take into consideration non-point source pollution load per unit area, duration of the excess concentration, realizable possibility of treatment, effectiveness of treatment cost versus point source pollutant, should be established in the regions with a large generated non-point source pollution load and a high concentration of water quality exceed the targeted water quality standards by the rainfall.

Cost Reduction Measure for River Water Quality Management by Cooperation between Local Governments:a Case of the Youngsan River (지자체간 협조를 통한 하천수질관리 비용절감 방안: 영산강을 대상으로)

  • Yeo, Kyu Dong;Jo, Eun Hui;Jung, Young Hun;Yi, Choong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.273-285
    • /
    • 2012
  • Current TMDL based on the 'Polluter Pays Principle' in Republic of Korea is individually operated by each local government for the designed allocated pollution load of unit watershed and unit district. However, unlike the motion of the air contaminants, the polluted contaminants in a river move from upstream to downstream, and a river can affect to districts more than two. In addition, a decision making on the construction of a sewage treatment facilities follows the concept of 'economy of scale'. These reasons support the collaboration among local governments in order to reduce the costs in improving water quality. This study suggested a method to reduce water quality management cost by redistributing reduction load considering cost-effectiveness for an entire watershed. The assessment on the suggested method is conducted in Youngsan river watershed. Without variation in total load, reduction load assigned for unit watershed and unit district is retributed in the region where pollutant source is concentrated, and then water quality and cost reduction improved from the redistribution of reduction load is analyzed. The results show that the cost saved by the suggested method is KRW 124 billion for scenario-1 and 172 billion for scenario-2 considering total cost of KRW 788 billion for the existing plan. We expect that the suggested method is a good example to reduce water quality management cost in local governments for TMDL.

Water Quality Management Planning for the Lake Sapgyo by Stream Grading Method (하천등급화 모델을 이용한 삽교호 수질관리 방안에 관한 연구)

  • Choi, Jeongho;Kim, Hongsu;Cho, Byunguk;Park, Sanghyun;Lee, Mukyu
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.245-254
    • /
    • 2020
  • Water quality improvement projects are being implemented without predicting the effect of water quality improvement on Lake Sapgyo. As the method of selecting the target stream for the effective conduct of water quality improvement projects the method of rating the streams were studied. To build a stream grading method, 60 major streams in the Lake Sapgyo system were monitored. The selection method of rivers subject to priority management for water quality improvement was applied to the stream grading method using the Analytic Hierarchy Process (AHP). The analysis of importance by site by stream grading method revealed the following: water quality (36.0%), flow (26.1%), travel load (13.4%), TMDL density (12.0%), TMDL (8.9%), and area (3.7%). The pollution level of the river was scored by using the stream grading method, and the ranking of 51 streams was calculated. Based on this, the group was classified into six grades (A-F). Among the groups, the F and E groups were selected as the priority management streams. Cheonan-Cheon (Cheonan City) was selected as the first stream to establish water quality improvement measures in the Lake Sapgyo system, and Seowoo-Cheon (Dangjin City) was selected as the second site, and Oncheon-Cheon (Asan City) was selected as the third site. Each local government is expected to improve the water quality improvement effect with limited resources when establishing and implementing water quality improvement measures for the streams (F group, E group) to be managed in this study.

Characteristics of Discharged Loads from Saemangeum Watershed (새만금유역의 배출부하 특성)

  • Jung, Jae-Woon;Jang, Jeong-Ryeol;Choi, Kang-Won;Lim, Byung-Jin;Lee, Young-Jae;Kang, Jae-Hong;Park, Hye-Lin;Cho, So-Hyun
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.35-41
    • /
    • 2010
  • For efficient water quality management of Saemangeum lake, it is very important to accurately analyze discharged load characteristics using investigated pollution sources data from Saemangeum watershed. Investigation of pollution sources was conducted from 2003 to 2007. In this study, pollution sources are largely classified into human population, livestock, industry, and land use. Discharged loads of BOD, T-N and T-P from classified pollution sources were calculated by Korea TMDL (Total Maximum Daily Load) technical guideline. The calculated results showed that the major sources of BOD and T-N were land use, human population, livestock, and industry in order. However, the major sources of T-P were livestock, land use, human population, and industry in order. Our results clearly show that pollution sources of the priority management for water quality enhancement in the Saemangeum lake has represented land use and livestock.

  • PDF

Land Use Characteristics in the Kyungan Watershed by Analyzing Long-Term Land Cover Data (장기적 토지피복 분석을 통한 경안천 유역의 토지이용 특성)

  • Han, Mideok;Kim, Jichan;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • The use of land cover was sharply changed during 1975~2007 in the Kyungan watershed $(561.12 km^2)$. The changes occurred over an area of more than $227.65 km^2$ during the overall period at changing rates of 1.04% per year for water area, 1.79% per year for residential area, 2.99% per year for bare area, 3.03% per year for wetland area, 3.04% per year for grass area, 0.87% per year for forest and 2.32% per year for agriculture area. Water, residential, bare and wetland areas increased, while grass, forest and agriculture areas decreased during the last 32 years. BOD concentrations of representative sites for each sub-watershed continuously increased until the early 2000s as residential area increased with the highest discharged load, but decreased after the mid 2000s except upper Kyungan watershed. Such decline appears to be associated with the planning of Total Maximum Daily Load management for Gwangju city and expansion of waste water treatment plant. It is necessary to control land use/cover changes of the upper watershed and to prepare appropriate watershed management system for improvement in river environment including water quality, stream flow and bio-diversity.

Valuation of Ecosystem Water Quality Regulation Service Using TMDL (수질오염총량을 이용한 생태계 수질조절 서비스 가치 평가)

  • Lee, Chang Hee;Park, Kyung Ok
    • Journal of Wetlands Research
    • /
    • v.19 no.2
    • /
    • pp.240-245
    • /
    • 2017
  • In this study, we developed a method to assess quantitatively the amount and the economic value of water quality regulating service of ecosystem services. Numbers of species and aquatic organisms such as fish increased because of the improved water, but it was due to complex factors such as water quality regulation services of ecosystems, installation of environmental facilities for water quality treatment, and water quality regulation. Therefore we sought ways to quantitatively estimate the value of ecosystem regulation services. In this study, we propose a method to estimate the quantitative value of water quality regulation service of ecosystem by utilizing the total amount of water pollution. In addition, the economic value evaluation method was proposed by multiplying the estimated the quantitative value of water quality regulation service of ecosystem by the unit cost per unit capacity. Finally, the ecosystem water quality regulation service was estimated by using the evaluation method for BOD and T-P in Nakdong river watershed.