• 제목/요약/키워드: total lactic acid bacteria

검색결과 796건 처리시간 0.019초

Production of Polyphenols and Flavonoids and Anti-Oxidant Effects of Lactic Acid Bacteria of Fermented Deer Antler Extract

  • Kim, Hyun-Kyoung;Choi, Kang-Ju;Ahn, Jong-Ho;Jo, Han-Hyung;Lee, Chang-Soon;Noh, Ji-Ae
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.197-208
    • /
    • 2021
  • The deer antler has been used as a major drug in oriental medicine for a long time. Recently, the demand for easy-to-take health functional foods is increasing due to economic development and changes in diet. As part of research on the development of functional materials for antlers, lactic acid fermentation of antler extract was performed. It was intended to develop a functional material with enhanced total polyphenol and flavonoid content and enhanced antioxidant activity. Lactic acid bacteria fermentation was performed by adding 4 types of lactic acid bacteria starter products, B. longum, Lb. Plantarum, Lb. acidophilus and mixture of 8 types of lactic acid bacteria to the antler water extract substrate, respectively. During the fermentation of lactic acid bacteria, the number of proliferation, total polyphenol and total flavonoid content, DPPH radical scavenging and antioxidant activity were quantified and evaluated. As a result of adding these four types of lactic acid bacteria to the antler water extract substrate, the number of lactic acid bacteria measured was 2.04~5.00×107. Meanwhile, a protease (Baciullus amyloliquefaciens culture: Maxazyme NNP DS) was added to the antler extract to decompose the peptide bonds of the contained proteins. Then, these four types of lactic acid bacteria were added and the number of lactic acid bacteria increased to 2.84×107 ~ 2.21×108 as the result of culture. The total polyphenol contents were 4.82~6.26 ㎍/mL in the lactic acid bacteria fermentation extracts, and after the reaction of protease enzyme and lactic fermentation, increased to 14.27~20.58 ㎍/mL. The total flavonoid contents were 1.52~2.21 ㎍/ml in the lactic acid bacteria fermentation extracts, and after the protease reaction and fermentation, increased to 5.59 ~ 8.11 mg/mL. DPPH radical scavenging activities of lactic acid bacteria fermentation extracts was 17.03~22.75%, but after the protease reaction and fermentation, remarkably increased to 32.82~42.90%.

Effect of Lentinus edodes on the Growth of Intestinal Lactic Acid Bacteria

  • Bae, Eun-Ah;Kim, Dong-Hyun;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • 제20권5호
    • /
    • pp.443-447
    • /
    • 1997
  • As the growth factor of lactic acid bacteria, LD (trehalose) was isolated from Lentinus edode5 by using silica gel column chromatography. LD induced the growth of Bifidobacteria breve and Lactobacillus brevis, which were isolated from human feces. LD selectively induced the growth of lactic acid bacteria among total microflora. When total intestinal microflora were cultured in the medium containing LD, it stimulated the growth of lactic acid bacteria and inhibited harmful enzymes, ${\beta}$-glucosidase, ${\beta}$-glucuronidase, and tryptophanase, of intestinal bacteria. LM, which was a monosaccharide from L. edooles, induced the growth of lactic acid bacteria but it seems to be invaluable in vivo. LH isolated from L. edodes by Sephadex G-100 column chromatography was not effective for the growth of lactic acid bacteria.

  • PDF

파쇄(破碎)고구마의 밀봉저장중(密封貯藏中) 화학성분(化學成分)의 변화(變化) (Chemical Changes during the Storage of Sweet potatoes Crushed and Sealed up with Polyethylene Film)

  • 김승겸;김성열
    • 농업과학연구
    • /
    • 제11권1호
    • /
    • pp.45-52
    • /
    • 1984
  • Changes of chemical componts and populations of total bacteria and lactic acid bacteria were examined during a month-long storage of sweet potatoes crushed and sealed up with polyethylene film at $7-8^{\circ}C$. 1. Changes of starch, total protein, volatile acid and ammonia-nitrogen contents were li 2. In a three days, pH down and increase of non-volatile acid content were notable, populations of total bacteria and lactic acid bacteria were maximum. 3. Vitamic C and soluble sugar contents tended to be reduced during the storage and the leftover were 75-85% and 41-45% respectively. 4. ${\beta}$-Amylase activity decreased gradually and vanished 15-30days. 5. Variations of chemical compontents of the samples inoculated lactic acid bacteria were larger than non- treated to some extent. 6. As above results, mainly homo lactic acid fermentation was done in this storage condition.

  • PDF

The improvement effect of antioxidant activity of Aronia extract that fermented by Lactic acid bacteria isolated from the fermented seafoods

  • Choi, Ui-Lim;Lim, Jeong-Muk;Lee, Jeong-Ho;Moon, Kwang Hyun;Kim, Dae Geun;Jeong, Kyung Ok;Im, So Yeon;Oh, Byung-Taek
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.110-110
    • /
    • 2018
  • The purpose of this study was to evaluate the improved antioxidant activity of Aronia extract fermented by lactic acid bacteria isolated from fermented seafoods. Aronia fruits were collected from Sunchang, Chonbuk, South Korea. And these collected fruits were lyophilized for fermentation. For the selection of effective lactic acid bacteria useful for fermentation. Aronia fermented by lactic acid bacteria that isolated from fermented seafood was extracted with 60% ethanol. Antioxidant activity of Aronia extract was evaluated on the DPPH radical scavenging activity and total polyphenol contents were studied. To determine the optimal fermentation conditions, the changes of antioxidant efficacy was evaluated by controlling temperature (25, 30, 37, $40^{\circ}C$), Time (0~5 day) and inoculation dose of lactic acid bacteria (0.125~0.5ml). To confirm the antioxidative effect of Aronia fermented under optimal conditions, the DPPH & ABTS radical scavenging activity, total polyphenol & flavonoid contents were compared before and after fermentation were studied. 16 different kinds of lactic acid bacteria were isolated from fermented seafood, and of which antioxidant activity of Aronia fermented by Pediococcus pentosaceus B1 was maximum. Aronia fermentation at $37^{\circ}C$ was maximized when fermented for 3 days and fermentation time is decreased as the start inoculation amount of lactic acid bacteria increased. The degree of increase in antioxidant activity after Aronia fermentation is that DPPH & ABTS radical scavenging activity was increased about 27%, 20% and total polyphenols & flavonoids contents was increased about 12%, 15%. In the result of this experiment indicated that fermentation process enhances the antioxidant efficacy of Aronia.

  • PDF

Effects of Lactic Acid Bacteria Inoculant on Fermentation Quality and in vitro Rumen Fermentation of Total Mixed Ration

  • Choi, Yeon Jae;Lee, Sang Suk
    • 한국초지조사료학회지
    • /
    • 제39권3호
    • /
    • pp.132-140
    • /
    • 2019
  • Fermented total mixed ration (TMR) is a novel feed for ruminants in South Korea. The purpose of this study was to evaluate the effects of lactic acid bacteria (LAB) on the quality of TMR and in vitro ruminal fermentation. Strains of three LAB spp. (Lactobacillus plantarum, L. brevis, L. mucosae) were used in fermentation of TMR. Inoculations with the three LAB spp. lowered pH and increased concentrations of lactic acid, acetic acid, and total organic acid compared to non-LAB inoculated control (only addition of an equivalent amount of water) (p<0.05). Bacterial composition indicated that aerobic bacteria and LAB were higher. However, E. coli were lower in the fermented TMR than those in the control treatment (p<0.05). Among the treatments, L. brevis treatment had the highest concentration of total organic acid without fungus detection. Gas production, pH, and ammonia-nitrogen during ruminal in vitro incubation did not differ throughout incubation. However, ruminal total VFA concentration was higher (p<0.05) in the LAB spp. treatments than the control treatment at 48 hours. Overall, the use of L. brevis as an inoculant for fermentation of high moisture. TMR could inhibit fungi growth and promote lactic fermentation, and enhance digestion in the rumen.

누룩 중의 젖산균의 분리 및 동정 (Isolation and Identification of the Lactic Acid Bacteria from Nuruk)

  • 조갑연;하덕모
    • Applied Biological Chemistry
    • /
    • 제38권2호
    • /
    • pp.95-99
    • /
    • 1995
  • 전국 각지에서 수집한 누룩 27개 시료에 대해서 젖산균수 및 총균수를 조사하고 젖산균을 분리, 동정하였다. 젖산균수 및 총균수의 평균치는 각각 $2.12{\times}10^7$ cfu 및 $2.08{\times}10^8\;cfu/g$이었으며 시료에 따라 젖산균수는 큰 차이가 없으나 총균수에 있어서는 큰 차이를 나타내었다. 젖산균 중 구균이 $70{\sim}95%$를 차지하였으며 분리된 32균주는 Leuconostoc mesenteroides subsp. mesenteroides (11균주), Pediococcus (7균주), Lactobacillus plantarum (3균주), L. murinus (7균주) 및 Enterococcus (4균주)로 동정하였다(1995년 1월 19일 접수, 1995년 2월 16일 수리).

  • PDF

녹용추출물의 유산균 발효에 의한 플라보노이드 생성과 항산화활성 효과 (Flavonoid production and antioxidant activity effect by lactic acid bacteria fermentation of deer antler extract)

  • 김현경
    • 문화기술의 융합
    • /
    • 제8권2호
    • /
    • pp.399-408
    • /
    • 2022
  • 녹용 기능성 소재 개발 연구의 일환으로 녹용 추출물의 유산균 발효를 수행하였다. 총 폴리페놀과 플라보노이드 함량이 증가하고 항산화 활성이 강화된 기능성 소재를 개발하고자 하였다. 유산균 발효중 증식수, 총 폴리페놀 및 총 플라보노이드 함량, DPPH 라디칼 소거 및 항산화 활성을 평가하였다. 녹용 추출물 기질에 이들 4종의 유산균을 첨가한 결과, 측정된 유산균 수는 2.04~5.00×107이었다. 한편, 녹용 추출물에 프로테아제(Baciullus amyloliquefaciens culture: Ma×azyme NNP DS)를 첨가하여 함유된 단백질의 펩타이드 결합을 분해하였다. 그런 다음 이들 4종의 유산균을 첨가하여 배양한 결과 유산균의 수는 2.84107~2.21108로 증가하였다. 총 폴리페놀 함량은 유산균 발효추출물에서 4.82~6.26g/mL이었으며, 프로테아제 효소와 젖산발효 반응 후 14.27~20.58g/mL로 증가하였다. 총 플라보노이드 함량은 유산균 발효추출물에서 1.52~2.21 g/ml이었고, 프로테아제 반응 및 발효 후에는 5.59 ~ 8.11 mg/mL로 증가하였다. 유산균 발효 추출물의 DPPH 라디칼 소거능은 17.03~22.75%였으나, protease 반응과 발효 후에는 32.82~42.90%로 현저히 증가하였다.

패류로부터 분리된 젖산균에 의한 젖산의 생산 (Production of Lactic Acid by Lactic Acid Bacteria Isolated from Shellfish)

  • 강창호;정호건;구자룡;소재성
    • KSBB Journal
    • /
    • 제30권4호
    • /
    • pp.161-165
    • /
    • 2015
  • Lactic acid and its derivatives are widely used in the food, pharmaceutical, and cosmetic industries. It is also a major raw material for the production of poly-lactic acid (PLA), a biodegradable and environmentally friendly polymer and a possible alternative to synthetic plastics derived from petroleum. For PLA production by new strains of lactic acid bacteria (LAB), we screened LAB isolates from shellfish. A total of 51 LAB were isolated from 7 types of shellfishes. Lactic acid production of individual isolates was examined using high-performance liquid chromatography using a Chiralpak MA column and an ultraviolet detector. Lactobacillus plantarum T-3 was selected as the most stress-resistant strain, with minimal inhibition concentrations of 1.2 M NaCl, 15% ethanol, and 0.0020% hydrogen peroxide. In a 1 L fermentation experiment, $\small{D}$-lactic acid production of 19.91 g/L fermentation broth was achieved after 9 h cultivation, whereas the maximum production of total lactic acid was 41.37 g/L at 24 h.

Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria

  • Choi, Suk-Ho
    • Journal of Animal Science and Technology
    • /
    • 제58권3호
    • /
    • pp.10.1-10.10
    • /
    • 2016
  • Background: Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Methods: Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Results: Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Conclusion: Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

효소와 유산균 전처리 밀싹분말의 이화학적 성분 및 항산화 활성 (Physicochemical Components and Antioxidative Activity of Wheat Sprout Powder Prepared by the Enzyme and the Lactic Acid Bacteria)

  • 주뤠이위;박영민;오종철;유현희
    • 한국식품영양학회지
    • /
    • 제33권5호
    • /
    • pp.459-472
    • /
    • 2020
  • The purpose of this study was to evaluate the physicochemical components and antioxidant activities of wheat sprout powder prepared by the enzymatic hydrolysis and lactic acid bacteria treatment. The four kinds of pre-treatment were: no treatment (WP), treated with enzyme (WPE), treated with lactic acid bacteria (WPL), and treated with enzyme and lactic acid bacteria (WPEL) were applied to the wheat sprout powder. The WPEL had higher total free amino acid and essential amino acid content than the other samples. As for the volatile aroma of the wheat sprout powder, 29 types of compounds were identified in the WP and WPL, 28 types in the WPE, and 27 types in the WPEL, respectively. The total polyphenols and flavonoids contents, in the wheat sprout powder was enhanced with the enzyme and the lactic acid bacteria pre-treatment. The WPEL had highest DPPH radical scavenging activities. The overall acceptability was the highest at 6.24 points in the WPEL. Based on these observations, it was confirmed that the enzyme and lactic acid bacteria pre-treatment could improve the antioxidant activities and active component of the wheat sprout powder.