• Title/Summary/Keyword: total intramuscular lipid

Search Result 18, Processing Time 0.021 seconds

Effect of Sea Tangle and Hypoglycemic Agent on Lipid Metabolism in Diabetic Rats (다시마와 혈당강하제가 당뇨쥐의 지질대사에 미치는 영향)

  • 서정숙;이경순;최영선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.960-967
    • /
    • 1998
  • The present study was conducted to investigate the effect of sea tangle and hypoglycemic agent on lipid metabolism in normal and dabetic rats. Male Sprague-Dawely rats were fed AIN-76 based experimental diets containing 5%(w/w) cellulose or 15%(w/w) sea tangle for 3 weeks, after which diabetic groups were made diabetic by intramuscular injection of streptozotocin(STZ, 45mg/kg BW). Metformin(350mg/kg BW) as a hypoglycemic agent was given once a day using a feeding tube for 5 days. Body weight grains were reduced significantly by STZ treatment, but not influenced by metformin feeding. Blood glucosel levels in sea tangle groups were reduced, compared with those in cellulose groups. Metformin feeding showed the lowering effect of blood glucose. Plasma levels of triglyceride were increased significantly in diabetic rats, but decreased in metformin group by sea tangel feeding. Total cholestero contents showed a similar tendency with triglyceride, but were reduced in diabetic groups without metformin by sea tangle feeding. Plasma levels of HDL-cholesterol were reduced in diabetic rats, compared with those in normal rats. There was a significant increase in fecal weights in diabetic rats fed sea tangle. Fecal contents of cholesterol were lower in diabetic rats than in normal rats. In normal rats, it tended to increase by sea tangle feeding, but not significantly. Fecal excretions of coprostanol and coprostanone were reduced significantly in diabetic rats, compared with those of normal rats. It tended to increase in diabetic rats by simultaneous feeding of sea tangle and metformin, but not significantly. Diabetes reduced fecal excretion of bile acid, but it was increased by sea tangle and metformin feeding.

  • PDF

Evaluation of carcass traits, meat quality and the expression of lipid metabolism-related genes in different slaughter ages and muscles of Taihang black goats

  • Amin Cai;Shiwei Wang;Pengtao Li;Zhaohui Yao;Gaiying Li
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1483-1494
    • /
    • 2024
  • Objective: This study was conducted to investigate the effect of slaughter age on carcass traits, meat quality, and the relative mRNA levels of lipid metabolism-related genes in different muscles of Taihang black goats. Methods: In this study, the triceps brachii (TB), longissimus dorsi (LD) and gluteus (GL) muscles of 15 grazing Taihang black goats slaughtered at the age of 2, 3, and 4 (designated as 2-year-old, 3-year-old, and 4-year-old, respectively) were collected. The differences in carcass shape, meat quality, amino acid composition and lipid metabolism gene expression among Taihang black goats of different ages and from different plant parts were compared. Results: Compared with goats at other ages, goats slaughtered at the age of 4 had greater live and carcass weights, meat weights, bone weights and skin areas (p<0.05). LD in the 4-years-old had the lowest cooking loss and moisture content. The crude protein content in the LD of 2-year-old was significantly greater than that in the other age group, and at the age of 2, the LD had the highest crude protein content than TB and GL. The highest fat content was in LD, followed by TB, for goats slaughtered at the age of 4. Eight out of 9 essential amino acids had higher content in the TB compared with other muscles, regardless of age. The total essential amino acid content was highest in the 4-year-old and lowest in the GL muscle at the age of 3. The sterol regulatory element-binding protein-1c (SREBP-1c) and adipose triglyceride lipase (ATGL) genes were significantly more abundant in the TB muscle than in the other muscles for goats slaughtered at the age of 2. At the age of 4, the ATGL and peroxisome proliferator-activated receptor γ (PPARγ) genes were significantly more abundant in the GL than in the LD, while the fatty acid synthase (FAS) genes were significantly less abundant in the GL than in the other muscles. Similarly, compared with those in goats of other ages, the relative mRNA expression levels of the FAS and heart-type fatty acid binding protein (H-FABP) genes in goats slaughtered at the age of 4 were the highest, and the relative mRNA expression of the PPARγ gene was the lowest (p<0.05). The relative mRNA expression of the H-FABP and FAS genes was positively correlated with the intramuscular fat (IMF) content, while the relative mRNA expression levels of the PPARγ and ATGL genes was negatively correlated with the IMF content. Conclusion: Overall, a better nutritional value was obtained for TB from 4-year-old goats, in which the total essential amino acid and fat contents were greater than those of other muscles. The comprehensive action of lipid metabolism genes was consistent with that of the IMF content, among which the FAS, H-FABP, PPARγ, and ATGL genes had positive and negative effects on the process of IMF deposition in Taihang black goats.

Investigation of the Effects of Oat and Barley Feeding on Performance and Some Lipid Parameters in Table Ducks

  • Orosz, Szilvia;Husveth, Ferenc;Vetesi, Margit;Kiss, Laszlo;Mezes, Miklos
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1076-1083
    • /
    • 2007
  • The effects of barley and oat feeding in table duck were investigated. During a 49-day growing period a corn-based diet was supplemented by 45% barley and 45% oats (isonitrogenously and iso-energetically), respectively. Daily feed intake, FCR-, and weight gain were measured. Abdominal fat, liver, and gizzard weights were determined and dry matter, protein, fat content and fatty acid composition of femoro-tibial muscles and liver fat were measured on the $35^{th}$, $42^{nd}$ and $49^{th}$ days of age. Feeding 45% barley caused a decrease of growth rate ($p{\leq}0.05$) during the first 4 weeks, which was followed by a rapid, compensatory growth from the $6^{th}$ week of age ($p{\leq}0.05$). Both barley and oat supplementation increased protein ($p{\leq}0.05$), while decreasing fat ($p{\leq}0.05$) and dry matter ($p{\leq}0.05$) content of the liver. Feeding of 45% oats in the diet decreased the monounsaturated fatty acid ($p{\leq}0,05$) and increased the n-6 ($p{\leq}0,05$), n-3 ($p{\leq}0,05$) and total polyunsaturated ($p{\leq}0,05$) fatty acid content of the intramuscular fat owing to the high proportion of soluble non-starch polysaccharides (NSP) in the diet. This might be explained by the more pronounced decrease in digestibility of saturated than unsaturated fatty acids in birds fed a soluble NSP-enriched diet. This result might be caused by the "cage effect" of soluble NSP trapping the bile salts which are more important for the absorption of saturated than polyunsaturated fatty acids.

In silico approaches to identify the functional and structural effects of non-synonymous SNPs in selective sweeps of the Berkshire pig genome

  • Shin, Donghyun;Oh, Jae-Don;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1150-1159
    • /
    • 2018
  • Objective: Non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in Berkshire selective sweep regions and then were investigated to discover genetic nsSNP mechanisms that were potentially associated with Berkshire domestication and meat quality. We further used bioinformatics tools to predict damaging amino-acid substitutions in Berkshire-related nsSNPs. Methods: nsSNPs were examined in whole genome resequencing data of 110 pigs, including 14 Berkshire pigs, generated using the Illumina Hiseq2000 platform to identify variations that might affect meat quality in Berkshire pigs. Results: Total 65,550 nsSNPs were identified in the mapped regions; among these, 319 were found in Berkshire selective-sweep regions reported in a previous study. Genes encompassing these nsSNPs were involved in lipid metabolism, intramuscular fatty-acid deposition, and muscle development. The effects of amino acid change by nsSNPs on protein functions were predicted using sorting intolerant from tolerant and polymorphism phenotyping V2 to reveal their potential roles in biological processes that may correlate with the unique Berkshire meat-quality traits. Conclusion: Our nsSNP findings confirmed the history of Berkshire pigs and illustrated the effects of domestication on generic-variation patterns. Our novel findings, which are generally consistent with those of previous studies, facilitated a better understanding of Berkshire domestication. In summary, we extensively investigated the relationship between genomic composition and phenotypic traits by scanning for nsSNPs in large-scale whole-genome sequencing data.

Profiling of skeletal muscle tissue for long non-coding RNAs related to muscle metabolism in the QingYu pig at the growth inflection point

  • Luo, Jia;Shen, Linyuan;Gan, Mailin;Jiang, Anan;Chen, Lei;Ma, Jideng;Jin, Long;Liu, Yihui;Tang, Guoqing;Jiang, Yanzhi;Li, Mingzhou;Li, Xuewei;Zhang, Shunhua;Zhu, Li
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1309-1320
    • /
    • 2021
  • Objective: Investigation of muscle growth at different developmental stages is an appropriate strategy for studying the mechanisms underlying muscle development and differences in phenotypes. In particular, the muscle development mechanisms and the difference between the fastest and slowest growth rates. Methods: In this study, we used a growth curve model to fit the growth inflection point (IP) of QingYu pigs and compared differences in the long non-coding RNA (lncRNA) transcriptome of muscle both at the growth IP and plateau phase (PP). Results: The growth curve of the QingYu pig had a good fit (R2 = 0.974) relative to a typical S-curve and reached the IP at day 177.96. At the PP, marbling, intramuscular fat, and monounsaturated fatty acids had increased significantly and the percentage of lean muscle and polyunsaturated fatty acids had decreased. A total of 1,199 mRNAs and 62 lncRNAs were differentially expressed at the IP compared with the PP. Additional to gene ontology and Kyoto encyclopedia of genes and genomes pathway analyses, these differentially expressed protein coding genes were principally related to muscle growth and lipid metabolism. Conclusion: Our results suggest that the identified differentially expressed lncRNAs, could play roles in muscle growth, fat deposition and regulation of fatty acid composition at the IP and PP.

Genome-wide association studies to identify quantitative trait loci and positional candidate genes affecting meat quality-related traits in pigs

  • Jae-Bong Lee;Ji-Hoon Lim;Hee-Bok Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1194-1204
    • /
    • 2023
  • Meat quality comprises a set of key traits such as pH, meat color, water-holding capacity, tenderness and marbling. These traits are complex because they are affected by multiple genetic and environmental factors. The aim of this study was to investigate the molecular genetic basis underlying nine meat quality-related traits in a Yorkshire pig population using a genome-wide association study (GWAS) and subsequent biological pathway analysis. In total, 45,926 single nucleotide polymorphism (SNP) markers from 543 pigs were selected for the GWAS after quality control. Data were analyzed using a genome-wide efficient mixed model association (GEMMA) method. This linear mixed model-based approach identified two quantitative trait loci (QTLs) for meat color (b*) on chromosome 2 (SSC2) and one QTL for shear force on chromosome 8 (SSC8). These QTLs acted additively on the two phenotypes and explained 3.92%-4.57% of the phenotypic variance of the traits of interest. The genes encoding HAUS8 on SSC2 and an lncRNA on SSC8 were identified as positional candidate genes for these QTLs. The results of the biological pathway analysis revealed that positional candidate genes for meat color (b*) were enriched in pathways related to muscle development, muscle growth, intramuscular adipocyte differentiation, and lipid accumulation in muscle, whereas positional candidate genes for shear force were overrepresented in pathways related to cell growth, cell differentiation, and fatty acids synthesis. Further verification of these identified SNPs and genes in other independent populations could provide valuable information for understanding the variations in pork quality-related traits.

Sequencing of cDNA Clones Expressed in Adipose Tissues of Korean Cattle

  • Bong, J.J.;Tong, K.;Cho, K.K.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.483-489
    • /
    • 2005
  • To understand the molecular mechanisms that regulate intramuscular fat deposition and its release, cDNA clones expressed in adipose tissues of Korean cattle were identified by differential screening from adipose tissue cDNA library. By partial nucleotide sequencing of 486 clones and a search for sequence similarity in NCBI nucleotide databases, 245 clones revealed unique clones. By a functional grouping of the clones, 14% of the clones were categorized to metabolism and enzyme-related group (stearoyl CoA desaturase, lactate dehydrogenase, fatty acid synthase, ATP citrate lyase, lipoprotein lipase, acetyl CoA synthetase, etc), and 6% to signal transduction/cell cycle-related group (C/EBP, cAMP-regulated phosphoprotein, calmodulin, cyclin G1, cyclin H, etc), and 4% to cytoskeleton and extracellular matrix components (vimentin, ankyrin 2, gelosin, syntenin, talin, prefoldin 5). The obtained 245 clones will be useful to study lipid metabolism and signal transduction pathway in adipose tissues and to study obesity in human. Some clones were subjected to full-sequencing containing open reading frame. The cDNA clone of bovine homolog of human prefoldin 5 gene had a total length of 959 nucleotides coding for 139 amino acids. Comparison of the deduced amino acid sequences of bovine prefoldin 5 with those of human and mouse showed over 95% identity. The cDNA clone of bovine homolog of human ubiquitin-like/S30 ribosomal fusion protein gene had a total length of 484 nucleotides coding for 133 amino acids. Comparison of the deduced amino acid sequences of bovine ubiquitin-like/S30 ribosomal fusion protein gene with those of human, rat and mouse showed over 97% identity. The cDNA clone of bovine homolog of human proteolipid protein 2 mRNA had a total length of 928 nucleotides coding for 152 amino acids. Comparison of the deduced amino acid sequences of bovine proteolipid protein 2 with those of human and mouse showed 87.5% similarity. The cDNA clone of bovine homolog of rat thymosin beta 4 had a total length of 602 nucleotides coding for 44 amino acids. Comparison of the deduced amino acid sequences of bovine thymosin beta 4 gene with those of human, mouse and rat showed 93.1% similarity. The cDNA clone of bovine homolog of human myotrophin mRNA had a total length of 790 nucleotides coding for 118 amino acids. Comparison of the deduced amino acid sequences of bovine myotrophin gene with those of human, mouse and rat showed 83.9% similarity. The functional role of these clones in adipose tissues needs to be established.

Iron sulfate and molasses treated anthocyanin-rich black cane silage improves growth performance, rumen fermentation, antioxidant status, and meat tenderness in goats

  • Rayudika Aprilia Patindra, Purba;Ngo Thi Minh, Suong;Siwaporn, Paengkoum;Pramote, Paengkoum;Juan Boo, Liang
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.218-228
    • /
    • 2023
  • Objective: This study investigated the effects of feeding anthocyanin-rich black cane treated with ferrous sulfate and molasses on animal performance, rumen fermentation, microbial composition, blood biochemical indices, and carcass characteristics in meat goats. Methods: Thirty-two Thai-native×Anglo-Nubian crossbred male goats (14.47±2.3 kg) were divided equally into two groups (n = 16) to investigate the effect of feeding diet containing 50% untreated anthocyanin-rich black cane silage (BS) vs diet containing anthocyaninrich black cane silage treated with 0.03% ferrous sulfate and 4% molasses (TBS) on average daily gain (ADG) and dry matter intake (DMI). At the end of 90 d feeding trial, the goats were slaughtered to determine blood biochemical indices, rumen fermentation, microbial composition, and carcass characteristics differences between the two dietary groups. Results: Goats fed the TBS diet had greater ADG and ADG to DMI ratio (p<0.05). TBS diet did not affect rumen fluid pH; however, goats in the TBS group had lower rumen ammonia N levels (p<0.05) and higher total volatile fatty acid concentrations (p<0.05). Goats in the TBS group had a higher (p<0.05) concentration of Ruminococcus albus but a lower (p<0.05) concentration of methanogenic bacteria. The TBS diet also resulted in lower (p<0.05) thiobarbituric acid-reactive substances concentration but higher (p<0.05) total antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase concentrations in blood plasma, while having no effect on plasma protein, glucose, lipid, immunoglobin G, alanine transaminase, and aspartate aminotransferase. Meat from goats fed the TBS diet contained more intramuscular fat (p<0.05) and was more tender (p<0.05). Conclusion: In comparison to goats fed a diet containing 50% untreated anthocyanin-rich black cane silage, feeding a diet containing 50% anthocyanin-rich black cane silage treated with 0.03% ferrous sulfate and 4% molasses improved rumen fermentation and reduced oxidative stress, resulting in higher growth and more tender meat.