• 제목/요약/키워드: total curvature

검색결과 223건 처리시간 0.022초

축류형 송풍기의 성능 및 소음 예측을 위한 전산 프로그램의 개발 및 적용 (Development and Application of the Computer Program for the Performance and Noise Prediction of Axial Flow Fan)

  • 정동규;홍순성;이찬
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.31-40
    • /
    • 2000
  • A computer program is developed for the prediction of the aerodynamic performance and the noise characteristics in the basic design step of axial flow fan. The flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fan. Furthermore, the present method is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level.

  • PDF

An instability criterion for viscoelastic flow past a confined cylinder

  • Dou, Hua-Shu;Phan-Thien, Nhan
    • Korea-Australia Rheology Journal
    • /
    • 제20권1호
    • /
    • pp.15-26
    • /
    • 2008
  • It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio ${\beta}$(polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.

Effects of Posteroanterior Mobilization on the Cervical Spine in Patient with Chronic Whiplash-Associated Disorders

  • Park, Si Eun;Kim, Ji Sung;Choi, Wan Suk
    • 국제물리치료학회지
    • /
    • 제8권1호
    • /
    • pp.1122-1127
    • /
    • 2017
  • The purpose of this case study was to identify the effects of posteroanterior (PA) mobilization on the cervical spine in a patient with chronic whiplash-associated disorder (WAD). The subject of this study was a 58-year-old woman who sustained a chronic WAD as a result of a motor vehicle accident two years prior. The subject has progressively worsening neck pain and stiffness. The subject was determined to have a grade IIb WAD the use of the Modified Quebec Classification. The intervention was central and unilateral PA mobilization on the spinous process of C4 and C5. The PA mobilizations were performed at the end of range to Maitland grade IV. The PA mobilization was conducted once daily for a total of eight days. Two sets of measurements were done one before and one after the intervention. Neck pain, cervical stiffness, range of motion and lordosis of the cervical spine were measured. Experimental intervention decreased the neck pain, and increased the neck stiffness and cervical ROM (range of motion) such as flexion, extension, lateral flexion and rotation. X-ray photographs also represented that cervical curvature increased from $35^{\circ}$ to $40^{\circ}$. This study suggested that PA cervical mobilization applied to hronic WAD is effective in decreasing pain, increasing cervical ROM and cervical curvature.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

성장에 따른 중학생 척추측만증 이행양상 (Scoliosis Progression according to the Growth of Middle School Students)

  • 김죽향;김은주
    • 지역사회간호학회지
    • /
    • 제14권3호
    • /
    • pp.479-487
    • /
    • 2003
  • Purpose: This study was conducted to investigate the progression of Cobb's angle of middle school students according to the Risser grade changes during a one-year follow up period, and to identify the prevalence rate and related factors regarding scoliosis. Method: A total of 2,124 middle school students were preliminarily screened by the Adam's forward bending test. Among them, 21 adolescents diagnosed with scoliosis (above 5Cobb's angle) by X-Raying were the subjects and followed up for checking Cobb's angle and the Risser grade for one year. Results: The overall prevalence of scoliosis in middle school students was 2.13% and the prevalence in girls was higher than in boys. The Cobb's angle was significantly high in seniors and girls. The cases in low angle and low Risser grade demonstrated significant changes in progressive Cobb's angle compared to the cases in high angle and high Risser grade after one-year. But gender and pattern of curvature were not significantly different from the changes scoliosis angle after one-year. Conclusion: Based on these study results, juniors in low Risser grade were inclined to aggravate scoliosis despite the low degree of curvature at the first measurement.

  • PDF

Thermomechanical Properties of Functionally Graded $Al-SiC_p$ Composites

  • Song, Dae-Hyun;Park, Yong-Ha;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.85-86
    • /
    • 2006
  • A theoretical model is applied to the analysis of thermomechanical properties of $Al-SiC_p$ FGMs in this study. Functionally graded $Al-SiC_p$ composites ($Al-SiC_p$ FGMs) consisted with 10 layers gradually changing volume fractions of Al and $SiC_p$ were fabricated using the pressureless infiltration technique. $Al-SiC_p$ FGMs plates of total thickness of 3mm, 5mm and 7mm with fairly uniform distribution and compositional gradient of $SiC_p$ reinforcement in the Al matrix throughout the thickness was successfully fabricated. The curvature of $Al-SiC_p$ FGM plates was measured to check the internal stress distribution predicted via a theoretical model for the analysis of thermo-mechanical deformation. The evolution of curvature and also internal stresses in response to temperature variations could be predicted for the different combinations of geometric thickness of FGM plates. Theoretical prediction of thermally induced stress distribution makes it possible to design FGM structures without any critical failure during the usage of them.

  • PDF

Effects of Self-Traction Exercises on the Vertebral Alignment, Muscle Strength, and Flexibility of Adults in Their Twenties with Scoliosis

  • Kim, Yongmin;Jeon, Changkeun;Yoo, Kyoungtae
    • 국제물리치료학회지
    • /
    • 제10권2호
    • /
    • pp.1810-1817
    • /
    • 2019
  • Background: Effect of cervical and lumbar tractions on the reduction in the angle of curvature and the effect of a correction exercise or a general traction method on balance, muscle strength, pain, and body alignment, however insufficient research has been undertaken on self traction exercises targeting patients with scoliosis. Purpose: To determine the effect of cervical and lumbar tractions on the reduction in the angle of curvature and the effect of a correction exercise or a general traction method on balance, muscle strength, pain, and body alignment. Design: Randomized controlled clinical trial (single blinded) Methods: Twelve adults(20s) with scoliosis were included in this study and performed a traction program that was composed of a 5-min warm-up exercise, a 15-min main exercise, and a 5-min cool-down exercise (25 minutes in total), three times a week for four weeks. The Chiro traction machine was used for the self-traction exercise. Vertebral alignment, muscle strength, and flexibility were compared before and after the intervention using the paired T-test. Results: The scoliosis angle, pelvic torsion, and lumbar extensor were significantly changed by intervention; however, there was no significant difference in flexibility. Conclusion: The results revealed that self-traction exercise activated blood flow through the extension and contraction of muscles, effectively increasing the function of the muscles around the vertebrae.

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

Comparison of Subjective and Objective Sleep Quality in Subjects with and without Hyper-kyphosis

  • Kim, Jun-hee;Hwang, Ui-jae;Choi, Sil-ah;Jung, Sung-hoon
    • The Journal of Korean Physical Therapy
    • /
    • 제34권5호
    • /
    • pp.272-277
    • /
    • 2022
  • Purpose: This study compared the subjective and objective sleep quality between subjects with and without thoracic hyper-kyphosis. Methods: Forty participants were divided into a hyper-kyphosis (n=17) and normal group (n=17) by thoracic spinal angle measurement. The subjective sleep quality was measured using PSQI, a self-report, and objective sleep quality was measured using an actigraphy that measures time according to sleep patterns. Results: The PSQI scores of subjects with thoracic hyper-kyphosis were significantly higher than those with normal thoracic curvature (p=0.013). The total sleep time and real sleep time were less in subjects with hyper-kyphosis than in normal subjects (p=0.006; p=0.029). The light sleep time was less in subjects with excessive spondylolisthesis than in normal subjects (p=0.010). Light sleep time was less in those with hyper-kyphosis, but deep sleep time was similar to the subjects with a normal thoracic curvature (p=0.003; p=0.140). Conclusion: Subjects with thoracic hyper-kyphosis had a decrease in subjective sleep quality, such as sleep discomfort, and objective sleep quality, such as a decrease in sleep time compared to normal subjects.

직선배치 긴장재를 갖는 PSC 휨 부재의 시간종속적 지배미분방정식 (Time-Dependent Differential Equation of PSC Flexural Member with Constant Eccentricity)

  • 강병수;김택중;조용덕;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.303-308
    • /
    • 2002
  • A governing differential equation (GDE) of PSC flexural member with constant eccentricity considering the long-term losses including concrete creep, shrinkage, and PS steel relaxation is derived based on the two approaches. The first approach utilizes the force and moment equilibrium equations derived based on the geometry of strains of the uniform and curvature strains while the second one utilizes the principle of minimum total potential energy formulation. The identity of the two GDE's is verified by comparing the coefficients consisting of the GDE's. The boundary conditions resulting from the functional analysis of the variational calculus are investigated. Rayleigh-Ritz method provides a way to get the explicit form of the continuous deflection function in which the total potential energy is minimized with respect to the unknown coefficients consisting of the trial functions. As a closure, the analytically calculated results are compared with the experiments and show good agreements.

  • PDF