• Title/Summary/Keyword: total Lagrangian approach

Search Result 39, Processing Time 0.025 seconds

A Lagrangian Relaxation Method for Parallel Machine Scheduling with Resource Constraints

  • Kim, Dae-Cheol
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.65-75
    • /
    • 1998
  • This research considers the problem of scheduling jobs on parallel machines with non-common due dates and additional resource constraints. The objective is to minimize the total absolute deviation of job completion times about the due dates. Job processing times are assumed to be the same. This problem is motivated by restrictions that occur in the handling and processing of jobs in certain phases of semiconductor manufacturing and other production systems. We examine two problems. For the first of these, the number of different types of additional: resources and resource requirements per job are arbitrary. The problem is formulated as a zero-one integer linear programming and the Lagrangian relaxation approach is used. For the second case, there exists one single type of additional resource and the resource requirements per job are zero or one. We show how to formulate the problem as an assignment problem.

  • PDF

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF

Geometrically Nonlinear Analysis of Laminated Composite Shell Structures (복합적층 쉘구조의 기하학적 비선형해석)

  • 유승운
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.119-125
    • /
    • 1997
  • The finite element analysis of plate and shell structures has been one of the major research interests for many years because of the technological importance of such structures. Quite often these structures are constructed by laminated composites. This is due to the high specific stiffness and strength of composite structures. The main objective of this paper is to extend the use of an improved degenerated shell element to the large displacement analysis of plates and shells with laminated composites. The total Lagrangian approach has been chosen for the definition of the deformation and the solution to the nonlinear equilibrium equations is obtained by the Newton-Raphson method.

  • PDF

Nonlinear Analysis of Reinforced Concrete Shells(II) (철근(鐵筋)콘크리트 쉘구조(構造)의 비선형(非線型) 해석(解析)(II))

  • Kim, Woon Hak;Shin, Hyun Mock;Shin, Hyun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.79-87
    • /
    • 1991
  • An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).

  • PDF

A FINITE-VISCOELASTIC CONTINUUM MODEL FOR RUBBER AND ITS FINITE ELEMENT ANALYSIS

  • Kim, Seung-Jo;Kim, Kyeong-Su;Cho, Jin-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.97-109
    • /
    • 1995
  • In this paper, a finite viscoelastic continuum model for rubber and its finite element analysis are presented. This finite viscoelatic model based on continuum mechanics is an extended model of Johnson and Wuigley's 1-D model. In this extended model, continuum based kinematic measures are rigorously defied and by using this kinematic measures, elastic stage law and flow rule are introduced. In kinematics, three configuration are introduced. In kinematics, three configuration are introduced. They are reference, current and virtual visco configurations. In elastic state law, it is assumed that at a certain time, there exists an elastic potential which describes the recoverable elastic energy. From this elastic potential, elastic state law is derived. The proposed flow rule is based on phenomenological observation. The flow rule gives precise relaxation response. In finite element approximation, mixed Lagrangian description is used, where total and similar method of updated Lagrangian descriptions are used together. This approach reduces the numerical job and gives simple nonlinear syatem of equations. To satisfy the incompressible condition, penalty-type modified Mooney-Rivlin energy function is adopted. By this method nearly incompressible condition is obtain the virtual visco configuration. For verification, uniaxial stretch tests are simulated for various stretch rates. The simulated results show good agreement with experiments. As a practical experiments. As a preactical example, pressurized rubber plate is simulated. The result shows finite viscoelastic effects clearly.

Large deflection analysis of a fiber reinforced composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.567-576
    • /
    • 2018
  • The objective of this work is to analyze large deflections of a fiber reinforced composite cantilever beam under point loads. In the solution of the problem, finite element method is used in conjunction with two dimensional (2-D) continuum model. It is known that large deflection problems are geometrically nonlinear problems. The considered non-linear problem is solved considering the total Lagrangian approach with Newton-Raphson iteration method. In the numerical results, the effects of the volume fraction and orientation angles of the fibre on the large deflections of the composite beam are examined and discussed. Also, the difference between the geometrically linear and nonlinear analysis of fiber reinforced composite beam is investigated in detail.

Thermal post-buckling analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.337-346
    • /
    • 2018
  • The purpose of this study is to investigate thermal post-buckling analysis of a laminated composite beam subjected under uniform temperature rising with temperature dependent physical properties. The beam is pinned at both ends and immovable ends. Under temperature rising, thermal buckling and post-buckling phenomena occurs with immovable ends of the beam. In the nonlinear kinematic model of the post-buckling problem, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. Also, material properties of the laminated composite beam are temperature dependent: that is the coefficients of the governing equations are not constant. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The effects of the fibber orientation angles, the stacking sequence of laminates and temperature rising on the post-buckling deflections, configurations and critical buckling temperatures of the composite laminated beam are illustrated and discussed in the numerical results. Also, the differences between temperature dependent and independent physical properties are investigated for post-buckling responses of laminated composite beams.

Geometrically nonlinear analysis of functionally graded porous beams

  • Akbas, Seref D.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • In this paper, geometrically non-linear analysis of a functionally graded simple supported beam is investigated with porosity effect. The material properties of the beam are assumed to vary though height direction according to a prescribed power-law distributions with different porosity models. In the nonlinear kinematic model of the beam, the total Lagrangian approach is used within Timoshenko beam theory. In the solution of the nonlinear problem, the finite element method is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution such as power-law exponents, porosity coefficients, nonlinear effects on the static behavior of functionally graded beams are examined and discussed with porosity effects. The difference between the geometrically linear and nonlinear analysis of functionally graded porous beam is investigated in detail. Also, the effects of the different porosity models on the functionally graded beams are investigated both linear and nonlinear cases.

Post-buckling responses of a laminated composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.733-743
    • /
    • 2018
  • This paper presents post-buckling responses of a simply supported laminated composite beam subjected to a non-follower axially compression loads. In the nonlinear kinematic model of the laminated beam, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The distinctive feature of this study is post-buckling analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. The effects of the fibber orientation angles and the stacking sequence of laminates on the post-buckling deflections, configurations and stresses of the composite laminated beam are illustrated and discussed in the numerical results. Numerical results show that the above-mentioned effects play a very important role on the post-buckling responses of the laminated composite beams.

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.691-705
    • /
    • 2018
  • In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.