• Title/Summary/Keyword: torsional waves

Search Result 64, Processing Time 0.027 seconds

Wave Motion of Helical Springs with a Circular Section (원형 단면을 갖는 헬리컬 스프링에 대한 파동)

  • Lee, Jae-Hyeong;Heo, Seung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.866-873
    • /
    • 2001
  • The governing partial differential equations of a helical spring with a circular section were derived from Frenet formulas and Timoshenko beam theory. These were solved to give the dispersion relationship between wave number and frequency along with wave form. Wave motions of helical springs are categorized by 4 regimes. In the first regime, the lower frequency area, the torsional and extensional waves of the spring are predominant and two waves are composite wave motions involving lateral motion of the coils and rotation of the coils about a horizontal axis. All waves are propagating in the second regime. The wave of the extensional motion of the spring and one wave of transverse motion of a wire change from travelling waves to near field waves in the third regime. Both waves excited by both axial and transverse motion are predominant in the fourth regime.

A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem (배관에서 상반 정리를 활용한 비틀림 파의 산란 신호 진폭의 닫힘 해 계산 연구)

  • Lee, Jaesun;Cho, Younho;Achenbach, Jan D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.647-652
    • /
    • 2016
  • Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation.

Scattering of torsional surface waves in a three layered model structure

  • Gupta, Shishir;Pati, Prasenjit;Mandi, Anand;Kundu, Santimoy
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.443-457
    • /
    • 2018
  • In this article, a comparative study has been made to investigate the scattering behaviour of three layered structure model on torsional surface wave. For such model intermediate layer is taken as fiber reinforced composite, resting over a dry sandy Gibson substratum and underlying by different anelastic media. We consider two distinct mediums for topmost layer. In the first case, topmost layer has been taken as fluid saturated homogeneous porous layer, while in the second case the fluid saturated porous layer has been replaced by a transversely isotropic layer. Simple form expression for the secular equation of torsional surface wave has been worked out in both the cases by executing specific boundary conditions, which comprises Whittaker's function and its derivative, for imminent result that have been elaborated asymptotically. Some special cases have been constituted which are in excellent compliance with recorded literatures. For the sake of comparative study, numerical estimation and graphical illustration have been accomplished to identify the effects of the width ratio of the layers, Biot's gravity parameter, sandy parameter, porosity parameter and other heterogeneity parameters corresponding to the layers and half spaces, horizontal compressive and tensile initial stress on the phase velocity of torsional surface wave.

Designing a Hydro-Structural Ship Model to Experimentally Measure its Vertical Bending and Torsional Vibrations

  • Houtani, Hidetaka;Komoriyama, Yusuke;Matsui, Sadaoki;Oka, Masayoshi;Sawada, Hiroshi;Tanaka, Yoshiteru;Tanizawa, Katsuji
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.174-184
    • /
    • 2018
  • We herein propose a new design procedure of a flexible container ship model where the vertical bending and torsional vibration modes are similar to its prototype. To achieve similarity in torsional vibration mode shapes, the height of the shear center of the model must be located below the bottom hull, similar to an actual container ship with large opening decks. Therefore, we designed a ship model by imparting appropriate stiffness to the hull, using urethane foam without a backbone. We built a container ship model according to this design strategy and validated its dynamic elastic properties using a decay test. We measured wave-induced structural vibrations and present the results of tank experiments in regular and freak waves.

Characteristics of Wave Transmission Through Various functions in Coupled Beams (연성보에서 연결 구조에 따른 파동 전달 특성)

  • 이병철;길현권;이효행;이용현;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.468-473
    • /
    • 2004
  • The objective of this paper is to analyze the characteristics of wave transmission through various junctions in coupled beams. The in-plane vibration as veil as the out-of-plane vibration are generated due to the wave conversion at the junctions in the coupled beams. The out-of-plane vibration is associated with propagation of out-of-plane waves (flexural waves). The in-plane vibration is associated with propagation of in-plane waves (longitudinal and torsional waves). In order to effectively reduce vibration and structure-borne noise, it is necessary to understand the characteristics of wave conversion at various junctions in the coupled structures. The numerical results in this paper have showed the characteristics of wave transmission through various junctions in coupled beams. Those could be helpful to designer to develop the idea to reduce vibration and structure-borne noise.

  • PDF

Identification of the Properties of Soils and Defect Detection of Buried Pipes Using Torsional Guided Waves (비틀림 유도파를 이용한 토양 특성 규명 및 지하매설 배관 결함 검출)

  • Park, Kyung-Jo;Kim, Chung-Yup
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-62
    • /
    • 2013
  • A technique is presented that uses a circular waveguide for the measurement of the bulk shear (S-wave) velocities of unconsolidated, saturated media, with particular application to near surface soils. The technique requires the measurement of the attenuation characteristics of the fundamental torsional mode that propagate along an embedded pipe, from which the acoustic properties of the surrounding medium are inferred. From the dispersion curve analysis, the feasibility of using fundamental torsional mode which is non-dispersive and have constant attenuation over all frequency range is discussed. The principles behind the technique are discussed and the results of an experimental laboratory validation are presented. The experimental data are best fitted for the different depths of wetted sand and the shear velocities are evaluated as a function of depths. Also the characteristics of the reflected signal from the defects are examined and the reflection coefficients are calculated for identifying the relation between defect sizes and the magnitude of the reflected signal.

Analysis of Linear Springing Responses of a Container Carrier by using Vlasov Beam Model (Vlasov 보 모델을 이용한 컨테이너 선박의 스프링잉 응답해석)

  • Kim, Yoo-Il;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.306-320
    • /
    • 2010
  • Modern ultra-large container carriers can be exposed to the unprecedented springing excitation from ocean waves due to their relatively low torsional rigidity. Large deck opening on the deck of container carriers tends to cause warping distortion of hull structure under wave-induced excitation, eventually leading to the higher chance of resonance vibration between its torsional response and incoming waves. To handle this problem, a higher-order B-spline Rankine panel method and Vlasov-beam FE model was directly coupled in the time domain, and the coupled equation was solved by using an implicit iterative method. In order to capture the complicated behavior of thin-walled open section girder, a sophisticated beam-based finite element model was developed, which takes into account warping distortion and shear-on-wall effect. Then, the developed beam model was directly coupled with the time-domain Rankine panel method for hydrodynamic problem by using the fixed-point iteration method. The developed computational scheme was validated through the comparison with the frequency-domain solution on the container carrier model in linear springing regime.

Propagation Speed of Torsional Elastic Waves In a Cylinder with a Periodically Corrugated Outer Surface (외면이 주기적으로 울퉁불퉁한 실린더에서 비틂 탄성파의 전파속도)

  • 김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.54-60
    • /
    • 1999
  • The paper describes a theoretical study on the speed of the torsional elastic waves propagating in a circular cylinder whose outer radius varies periodically as a harmonic function of the axial coordinate. The approximate solution for the phase speed has been obtained using the perturbation technique for sinusoidal modulation of small amplitude. It is shown that the wave speed in the cylinder with a corrugated outer surface is less than that in a smooth cylinder by the square of the amplitude of the surface perturbation. This theoretical prediction agrees reasonably with an experimental observation reported earlier. It is also shown that the wave speed reduction due to the surface corrugation becomes larger for a thinner cylinder and for a bigger density of corrugation.

  • PDF