• Title/Summary/Keyword: torsional shear

Search Result 286, Processing Time 0.021 seconds

Seismic Damage to RC Low-rise Building Structures Having Irregularities at the Ground Story During the 15 November 2017 Pohang, Korea, Earthquake (2017.11.15. 포항 흥해지진의 저층 RC 비틀림 비정형 건축물의 피해 및 손상 특성)

  • Hwang, Kyung Ran;Lee, Han Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2018
  • This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, $M_w=5.4$, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.

Methods of analysis for buildings with uni-axial and bi-axial asymmetry in regions of lower seismicity

  • Lumantarna, Elisa;Lam, Nelson;Wilson, John
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.81-95
    • /
    • 2018
  • Most buildings feature core walls (and shear walls) that are placed eccentrically within the building to fulfil architectural requirements. Contemporary earthquake design standards require three dimensional (3D) dynamic analysis to be undertaken to analyse the imposed seismic actions on this type of buildings. A static method of analysis is always appealing to design practitioners because results from the analysis can always be evaluated independently by manual calculation techniques for quality control purposes. However, the equivalent static analysis method (also known as the lateral load method) which involves application of an equivalent static load at a certain distance from the center of mass of the buildings can generate results that contradict with results from dynamic analysis. In this paper the Generalised Force Method of analysis has been introduced for multi-storey buildings. Algebraic expressions have been derived to provide estimates for the edge displacement ratio taking into account the effects of dynamic torsional actions. The Generalised Force Method which is based on static principles has been shown to be able to make accurate estimates of torsional actions in seismic conditions. The method is illustrated by examples of two multi-storey buildings. Importantly, the black box syndrome of a 3D dynamic analysis of the building can be circumvented.

Analysis of Linear Springing Responses of a Container Carrier by using Vlasov Beam Model (Vlasov 보 모델을 이용한 컨테이너 선박의 스프링잉 응답해석)

  • Kim, Yoo-Il;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.306-320
    • /
    • 2010
  • Modern ultra-large container carriers can be exposed to the unprecedented springing excitation from ocean waves due to their relatively low torsional rigidity. Large deck opening on the deck of container carriers tends to cause warping distortion of hull structure under wave-induced excitation, eventually leading to the higher chance of resonance vibration between its torsional response and incoming waves. To handle this problem, a higher-order B-spline Rankine panel method and Vlasov-beam FE model was directly coupled in the time domain, and the coupled equation was solved by using an implicit iterative method. In order to capture the complicated behavior of thin-walled open section girder, a sophisticated beam-based finite element model was developed, which takes into account warping distortion and shear-on-wall effect. Then, the developed beam model was directly coupled with the time-domain Rankine panel method for hydrodynamic problem by using the fixed-point iteration method. The developed computational scheme was validated through the comparison with the frequency-domain solution on the container carrier model in linear springing regime.

Sensitivity Analysis of Coupled Horizontal and Torsional Vibration of Hull Girder (선체 저차 수평.비틂 연성 고유진동 감도해석)

  • Dae-Seung Cho;Sa-Soo Kim;Doo-Yong Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 1999
  • This paper resents a prediction method of natural frequencies of coupled horizontal and torsional vibration of hull girder based on design sensitivity analysis in case of the changes of system parameters. The sensitivity analysis is formulated applying the direct differentiation method and transfer matrix method. In the analysis, warping, shear deformation due to torsion and the continuity condition at the connected part of open and closed hull section are considered. Using the presented method. The affection for natural frequencies by the change of system parameters, especially cargo and added mass and their centers, is numerically investigated for a real large container carrier.

  • PDF

CFRP strengthening of steel beam curved in plan

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.637-648
    • /
    • 2021
  • Nowadays, one of the practical, fast and easy ways to strengthen steel elements is the use of Carbon Fiber Reinforced Polymer (CFRP). Most previous research in the CFRP strengthening of steel members has carried out on straight steel members. The main difference between horizontal curved beams and straight beams under vertical load is the presence of torsional moment in the horizontal curved beams. In the other words, the horizontal curved beams are analyzed and designed for simultaneous internal forces included bending moment, torsional moment, and shear force. The horizontal curved steel beams are usually used in buildings, bridges, trusses, and others. This study explored the effect of the CFRP strengthening on the behavior of the horizontal curved square hollow section (SHS) steel beams. Four specimens were analyzed, one non-strengthened curved steel beam as a control column and three horizontal curved steel beams strengthened using CFRP sheets (under concentrated load and uniform distributed load). To analyze the horizontal curved steel beams, three dimensional (3D) modeling and nonlinear static analysis methods using ANSYS software were applied. The results indicated that application of CFRP sheets in some specific locations of the horizontal curved steel beams could increase the ultimate capacity of these beams, significantly. Also, the results indicated when the horizontal curved steel beams were under distributed load, the increase rate in the ultimate capacity was more than in the case when these beams were under concentrated load.

Strength Prediction Model of Interior Flat-Plate Column Connections according to Design Parameters (설계변수에 따른 플랫플레이트-기둥 접합부의 강도산정모형)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.405-414
    • /
    • 2006
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of design parameters such as column section shape, gravity load and slab span on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases and gravity load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. And as the slab span loaded with relatively large gravity load increases, the negative moment around the connection increases and therefore the strength of connection against unbalanced moment decreases. By considering the effect of design parameters on the strength of the connections, the effective shear strength to calculate the torsional moment capacity of connection was proposed and the effectiveness of the proposed shear strength was verified.

Investigation on the performance of a new pure torsional yielding damper

  • Mahyari, Shahram Lotfi;Riahi, Hossein Tajmir;Esfahanian, Mahmoud Hashemi
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.515-530
    • /
    • 2020
  • A new type of pure torsional yielding damper made from steel pipe is proposed and introduced. The damper uses a special mechanism to apply force and therefore applies pure torsion in the damper. Uniform distribution of the shear stress caused by pure torsion resulting in widespread yielding along pipe and consequently dissipating a large amount of energy. The behavior of the damper is investigated analytically and the governing relations are derived. To examine the performance of the proposed damper, four types of the damper are experimentally tested. The results of the tests show the behavior of the system as stable and satisfactory. The behavior characteristics include initial stiffness, yielding load, yielding deformation, and dissipated energy in a cycle of hysteretic behavior. The tests results were compared with the numerical analysis and the derived analytical relations outputs. The comparison shows an acceptable and precise approximation by the analytical outputs for estimation of the proposed damper behavior. Therefore, the relations may be applied to design the braced frame system equipped by the pure torsional yielding damper. An analytical model based on analytical relationships was developed and verified. This model can be used to simulate cyclic behavior of the proposed damper in the dynamic analysis of the structures equipped with the proposed damper. A numerical study was conducted on the performance of an assumed frame with/without proposed damper. Dynamic analysis of the assumed frames for seven earthquake records demonstrate that, equipping moment-resisting frames with the proposed dampers decreases the maximum story drift of these frames with an average reduction of about 50%.

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

Stiffness Test of Dowel Bar for fainted Concrete Pavement (콘크리트 포장의 다웰바 전단거동 실험)

  • Yang, Sung-Chul;Choi, Jae-Gon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Shear test procedure for concrete-dowel interaction was proposed along with determination of dowel support reaction factor or shear spring stiffness constant using the spreadsheet example. For this task, three AASHTO-type standard specimens were prepared to simulate behavior of the jointed concrete pavement. A side support system was adopted to minimize twisting of the test specimen which had been observed in a preliminary test. A typical elastic behavior of the dowel-concrete interaction was observed from several test loops of loading, unloading and reloading procedures. However load versus slab displacement represents to be nonlinear. Test results show that the dowel support reaction factor ranges from 550-880 GN/m3, which is 1.4-2.2 times greater than 407GN/m3 proposed by Yoder and Witczak. This is because less torsional distraction was occurred with the help of a side support system adopted in this experiment. The dowel support reaction factor or shear spring stiffness constant obtained from the procedures proposed in this paper may be used as a reference data for the structural analysis of jointed concrete pavement.

  • PDF

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.