• Title/Summary/Keyword: torsional moment

Search Result 238, Processing Time 0.03 seconds

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Inelastic Behavior of Post-tensioned Wide Beam System with different Reinforcement ratios within Column core (포스트텐션을 도입한 넓은 보에서 기둥 폭 내부에 배근된 보강재의 정착비에 따른 비탄성 거동 평가)

  • Choi Yun-Cheul;Lim Jae-Hyung;Moon Jeong-Ho;Lee Li-Hyung;Kwon Ki-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.85-94
    • /
    • 2005
  • Post-tensioned Precast concrete System(PPS) consists of U-shaped precast wide beams and concrete column. The continuity of beam-column joint is provided with floor concrete cast on the PC shell beam and post-tensioning. The purpose of this paper is to evaluate the response of PPS interior beam-column joint subjected to cyclic lateral loading. To this end, an experimental investigation was performed with three half-scale specimens of interior connection. The design parameters are the amount of beam reinforcement placed inside the joint core. The test results showed that cracks were distributed well without my significant degradation of strength and ductility. Also, it was found that the prestressing may affect to alter the torsional crack angle. And the specimens sufficiently resist up to limiting drift ratio of 0.035 in accordance with the provisional by ACl of acceptance criteria for concrete special moment frames.

Wall Tie Member Force Curve for the Construction Tower Crane (건축용 타워크레인 마스트의 횡방향 지지요소인 월타이 부재력 특성곡선)

  • Ko, Kwang IL;Oh, W.H.;Lee, E.T.
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.697-706
    • /
    • 2006
  • Tower crane's wall tie is generally used for extending of mast height according to rising of lifting height. In order to get wall tie member force this problem, this study concerning wall tie is based on load data described in manual book of 290HC model. This study made the equation of wall tie member force and computer programming for calculating wall tie member force and then get ${\theta}-P$ curves(angle-wall tie force). After considering the ${\theta}-P$ curves, optimum angle range ($48.4^{\circ}{\sim}77.2^{\circ}$) about wall ties (A), (C) members was obtained. Member force of wall tie (B) was changed from tension to compression or from compression to tension at $74^{\circ}$ in service and $54^{\circ}$ in out of service. When both horizontal force($H_A$) and torsional moment ($M_D$) were varied from (+) to (-), wall tie force(A, B, C) were changed almost symmetrically about ${\theta}$-axis. Because this study was based on wall tie analysis conditions, wall tie members in symmetric and ideal geometry shape used for analizing wall tie of tower crane, it is necessary to have more careful verification in order to apply generally the results of this study.

Deflection Evaluation of the Constructing-load Carrying Capacity for Deep Decking Floor System Reinforced with Both Ends Cap Plates (캡 플레이트로 단부 보강한 춤이 깊은 데크의 시공중 처짐성능평가)

  • Jeon, Sang Hyun;Kyung, Jae Hwan;Kim, Young Ho;Choi, Sung Mo;Yang, Il Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • If of application of the deep deckting floor in long span more than 6m, the deflection caused by the construction load occurred high. Because the constructing-works and safety by this deflection, take actually supports to laborers working on the deck. However, installed supports are having difficultly such as the restricted passage, deficiency of working space, and lowering of efficiency. And toward-opening deck is seen as local buckling of web plate, flexural-torsional buckling, and gradually opening of corrugated decking. In this study, we will suggest a deep decking floor system that reinforced with both ends cap plates for toward-opneing decking change from opening to closing. The constructing deflection of a deep decking more than 6m must be satified 30mm and L/180 as proposed. Full-scale field tests loading by sand conducted a deep decking reinforced with and without cap plate. In conclusion, the specimen reinforced with cap plates have shown that to ensure the negative moment $wl^2/18$. And constructing-deflection of deep decking shown that to satisfy the evaluation value (L/180 or 30mm).

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings (필로티형 고층 RC건물의 비선형시간이력해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.

Negative Support Reactions of the Single Span Twin-Steel Box Girder Curved Bridges with Skew Angles (단경간 2련 강박스 거더 곡선교의 사각에 따른 부반력 특성)

  • Park, Chang Min;Lee, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.34-43
    • /
    • 2012
  • The behaviors of the curved bridges which has been constructed in the RAMP or Interchange are very complicate and different than orthogonal bridges according to the variations of radius of curvature, skew angle and spacing of shoes. Occasionally, the camber of girder and negative reactions can be occurred due to bending and torsional moment. In this study, the effects on the negative reaction in the curved bridge were investigated on the basis of design variables such as radius of curvature, skew angle, and spacing of shoes. For this study, the twin-steel box girder curved bridge with single span which is applicable for the RAMP bridges with span length(L) of 50.0m and width of 9.0m was chosen and the structural analysis to calculate the reactions was conducted using 3-dimensional equivalent grillage system. The value of negative reaction in curved bridges depends on the plan structures of bridges, the formations of structural systems, and the boundary conditions of bearing, so, radius of curvature, skew angle, and spacing of shoes among of design variables were chosen as the parameter and the load combination according to the design standard were considered. According to the results of numerical analysis, the negative reaction in curved bridge increased with an decrease of radius of curvature, skew angle, and spacing of shoes, respectively. Also, in case of skew angle of $60^{\circ}$ the negative reaction has been always occurred without regard to ${\theta}/B$, and in case of skew angle of $75^{\circ}$ the negative reaction hasn't been occurred in ${\theta}/B$ below 0.27 with the radius of curvature of 180m and in ${\theta}/B$ below 0.32 with the radius of curvature of 250m, and in case of skew angle of $90^{\circ}$ the negative reaction hasn't been occurred in the radius of curvature over 180m and in ${\theta}/B$ below 0.38 with the radius of curvature of 130m, The results from this study indicated that occurrence of negative reaction was related to design variables such as radius of curvature, skew angle, and spacing of shoes, and the problems with the stability including negative reaction will be expected to be solved as taken into consideration of the proper combinations of design variables in design of curved bridge.

Flexural Test of H-Shape Members Fabricated of High-Strength Steel with Considering Local Buckling (국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • Depending on the plastic deformation capacity required, structural steel design under the current codes can be classified into three categories: elastic, plastic, and seismic design. Most of the current steel codes explicitly forbid the use of a steel material with a yield strength higher than 450 MPa in the plastic design because of the concerns about its low plastic deformation capacity as well as the lack of test data on local and lateral torsional buckling behavior. In this study, flexural tests on full-scale H-shape members built with SM490A (ordinary steel or benchmark material) and HSB800 (high-strength steel) were carried out. The primary objective was to investigate the appropriateness of extrapolating the local buckling criterion of the current codes, which was originally developed for normal-strength steel, to the case of high-strength steel. All the SM490A specimens performed consistently with the current code criteria and exhibited sufficient strength and ductility. The performance of the HSB800 specimens was also very satisfactory from the strength perspective; even the specimens with a noncompact and slender flange developed the plastic moment capacity. The HSB800 specimens, however, showed an inferior plastic rotation capacity due to the premature tensile fracture of the beam bottom flange beneath the vertical stiffener at the loading point. The plastic rotation capacity that was achieved was less than 3 (or the minimum level required for a plastic design). Although the test results in this study indicate that the extrapolation of the current flange local-buckling criterion to the case of high-strength steel is conservative from the elastic design perspective, further testing together with an associated analytical study is required to identify the causes of the tensile fracture and to establish a flange slenderness criterion that is more appropriate for high-strength steel.