• Title/Summary/Keyword: torsional fatigue

Search Result 92, Processing Time 0.024 seconds

Evaluation of Multiaxial Fatigue Strength of a Urban Railway Wheel Steel (도시철도 차량 차륜재의 다축 피로강도 평가)

  • Ahn, Jong-Gon;You, In-Dong;Kwon, Seok-Jin;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Uniaxial and biaxial torsional fatigue tests were conducted on the samples extracted from urban railway wheel steel. Ultimate and yield strengths of the steel were 1027.7 MPa and 626 MPa, respectively. The uniaxial fatigue limit was 422.5 MPa, corresponding 67% of the ultimate tensile strength. The ratio of ${\tau}_e/{\sigma}_e$ was 0.63. Fatigue strength coefficient and exponent were 1319.5 MPa and 0.339, respectively. Maximum principal and equivalent strain were found to be adequate parameter to predict fatigue lifetime of the steel under multiaixal fatigue condition.

A Study on Torsional Stiffness Improvement of a Vehicle (자동차의 비틀림 강성 향상에 관한 연구)

  • 임기창;임석현
    • Fire Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.47-54
    • /
    • 1997
  • Using high tensile steel plate makes the vehicle body stiffness lower even though it can lessen the fuel consume rate in application of weight reduction. The crack which happens arround vehicle window glass is brought about due to fatigue with low torsional stiffness. The paper presents a most suitable way to increase torsional stiffness using elasticity theory. Also the result of this study shows good agreement with FEM and experiments. We used a passenger car for calculation in this paper. Because we can apply the result of this study to fire engine as well as passenger car.

  • PDF

A study on the design of the press fit joint for automotive aluminum/composite hybrid propeller shaft (자동차용 알루미늄/복합재료 하이브리드 동력전달축의 압입접합부 설계에 관한 연구)

  • Kim, Hak-Sung;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.226-231
    • /
    • 2004
  • Press fitting method for joining of a hybrid tube and steel ring with small teeth for automotive aluminum/composite hybrid propeller shaft was devised to improve reliability and to reduce manufacturing cost, compared to other joining methods such as an adhesively bonded joint, bolted joint or welded joint. To obtain high strength of the press fit joint, an optimal design method for the teeth was devised with respect to number and shape of the steel teeth. Torsional static, fatigue tests and finite element analysis of the press fit joint were performed with respect to experimental variables. The developed optimal design method predicted well the static torque capability and failure mode of the press fit joint. Also, it provided design guide line of press fit joint for improving torsional static and fatigue characteristics.

  • PDF

A study on the torsional fatigue crack propagation behavior on the shaft with circumferential crack (환상구열을 갖는 축의 비틀림피로 구열성장거동에 관한 기초연구)

  • 김복기;최용식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.101-108
    • /
    • 1991
  • During torsional fatigue of externally cracked cylindrical specimen, crack face rubbing may occur. At this time, normal contact forces arise when shear displacements cause the crack faces to be wedged open due to mismatch of the fracture surface asperities. These normal forces, in turn, generate friction force which act in opposition to the applied shear stresses and reduce the effective stress intensity factor. The premise of the proposed work is that friction and wedging can be studied by measuring the shear and normal displacement across the crack mouth. We have measured the crack mouth compliance using the new biaxial extensometer.

  • PDF

A Change and Prediction of Biaxial Fatigue Life of Cast Duplex Stainless Steels by Degradation (2상 주조 스테인리스강의 열화로 인한 2축 피로수명의 변화와 예측)

  • Kwon, Jae-Do;Park, Joong-Cheul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.410-418
    • /
    • 2004
  • The multiaxial fatigue test under in-phase and out-of$.$phase load were performed to study what degradation phenomenon affects fatigue life with virgin and 3600 hrs degraded materials. The various kind of fatigue data fur fatigue life prediction were acquired under pure axial and pure torsional load of fully reversal condition. The models which was investigated are: 1) the von Mises equivalent strain range, 2) the critical shear plane approach method of Fatemi-Socie(FS) parameter, 3) the modified Smith-Watson-Topper(SWT) parameter. The result showed that, fatigue life by material degradation are decreased and life prediction which was used the FS parameter is not conservative but the best result.

The effect on Fatigue Strength of Induction Hardened Carbon Steel (고주파 열처리 강에 대한 피로강도에 미치는 경향)

  • Ko, Jun-Bin;Kim, Woo-Kang;Won, Jong-Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.83-87
    • /
    • 2005
  • Hardening Constant Velocity joint increases hardness near the surface and the surface improves fatigue life. Although case depth and chemical composition are same, the prior structure of induction hardened Constant Velocity Joint affects the fatigue strength and life during hardening. Therefore torsional fatigue tests of specimens from vaere conducted on induction hardened automotive Constant Velocity joint with various case depths and lrious prior structures, which are obtained by nomalizing, spheriodized annealing and tempering after quenching, woads applied in order to evaluate the relation between prior structure and fatigue strength.

Laser Welding Properties of the S45C using Automobile Brake Parts (자동차 브레이크 부품용 S45C 소재의 레이저 용접특성 평가)

  • Sim, Kijoong;Cho, Wonyoung;Kim, Youngkwan;Choi, Kyujae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2014
  • This paper represents the s-cam manufacturing process with the high-carbon steel like S45C using laser welding system. Laser welding of the high-carbon steel is generally difficult because of hardening of the weld zone. Also, existing s-cam manufacturing process, electric resistance welding system, have some problems like increase of production and development cost. To solve those problems, we are introduced the laser welding system with the pre-heating system for precision welding of s-cam with separated shaft and cam part. S-cam manufactured with optimum laser welding conditions is verified the performance like tensile strength, torsional strength and fatigue test. Strength and fatigue test results are described.

Evaluation of Multiaxial Fatigue Strength of a Urban Railway Wheel Steel (도시철도 차량 차륜재의 다축 피로강도 평가)

  • Ahn, Jong-Gon;You, In-Dong;Kwon, Suk-Jin;Son, Young-Jin;Kim, Ho-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.621-629
    • /
    • 2011
  • Uniaxial and biaxial torsional fatigue tests were conducted on the samples extracted from urban railway wheel steel. Ultimate and yield strengths of the steel were 1027.7 MPa and 626 MPa, respectively. The uniaxial fatigue limit was 422.5 MPa, corresponding 67% of the ultimate tensile strength. The ratio of ${\tau}_e/{\sigma}_e$ was 0.63. Fatigue strength coefficient and exponent were 1319.5 MPa and 0.339, respectively. Maximum principal and equivalent strain were found to be adequate parameter to predict fatigue lifetime of the steel under multiaixal fatigue condition.

  • PDF

Fatigue Life Prediction of Fiber-Reinforced Composite Materials having Nonlinear Stress/Strain Behavior (비선형 변형 거동을 갖는 섬유강화 복합재료의 피로수명 예측)

  • 이창수;황운봉
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 1999
  • Fatigue life prediction of matrix dominated composite laminates, which have a nonlinear stress/strain response, was studied analytically and experimentally. A stress function describing the relation of initial fatigue modulus and elastic modulus was used in order to consider the material nonlinearty. New modified fatigue life prediction equation was suggested based on the fatigue modulus and reference modulus concept as a function of applied stress. The prediction was verified by torsional fatigue test using crossply carbon/epoxy laminate tubes. It was shown that the proposed equation has wide applicability and good agreement with experimental data.

  • PDF

Assessment of fatigue damage in 5% chrome cold rolling work roll (5% 크롬 냉간 압연용 작업롤의 피로손상 평가에 대한 연구)

  • Kwak, G.J.;Kim, K.S.;Lee, S.W.;Yeo, W.K.;Park, Y.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.316-321
    • /
    • 2000
  • The role of fatigue on the surface damage of 5% chrome cold milling work roll is evaluated. Uniaxial and torsional fatigue tests are carried out, and the baseline data for fatigue life evaluation are established. An appropriate multiaxial fatigue parameter is developed from the fatigue data. Fatigue tests are also performed under compressive mean stresses, and a mean stress model is formulated. A computer program is developed to assess the interaction of fatigue and grinding of the roll. The fatigue damage is computed for selected servicing conditions. It is found that the fatigue damage can be an important issue when the effect of mean stress is ignored, however the fatigue damage is negligibly small when the effect of mean stress including the residual stresses currently used is fully accounted. The result indicates that spalling due to the growth of thermal shock cracks is more important than fatigue damage in roll surface failure.

  • PDF