• 제목/요약/키워드: torsional bracing

검색결과 29건 처리시간 0.02초

선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구 (An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine)

  • 이돈출;주기세;남택근;김상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

비정형 셀프센터링 가새골조의 비탄성 지진응답 (Inelastic Seismic Response of Asymmetric-Plan Self-Centering Energy Dissipative Braced Frames)

  • 김진구;;최현훈
    • 한국지진공학회논문집
    • /
    • 제12권4호
    • /
    • pp.35-44
    • /
    • 2008
  • 최근 새로운 지진하중 저항시스템으로 셀프센터링(SCED) 가새 시스템이 개발되었다. 진보된 가새 시스템인 비좌굴 가새(BRB) 시스템과는 달리 큰 지진이 발생한 후 구조물의 잔류 변형을 줄이거나 없앨 수 있는 셀프센터링 능력은 SCED 가새 시스템의 장점이다. 본 논문에서는 SCED 가새와 BRB 가새 시스템의 거동에 비틀림의 영향을 조사하기 위하여 세 가지 다른 편심을 가진 3차원 구조물의 응답을 비선형 동적해석을 수행하여 비교하였다. 해석결과에 따르면 층간변위의 높이방향의 변화는 비정형성에 관계없이 SCED 가새골조의 응답이 BRB 가새골조보다 일정하였으며, 잔류 층간변위와 잔류 회전 응답은 비정형성이 증가함에 따라 감소하였다. 중층 구조물에서 SCED 가새골조의 변형집중계수(DCF)는 BRB 가새골조보다 작은 것으로 나타났다. 이것은 SCED 가새골조가 건물 높이에 따라 보다 일정하게 변형함을 의미한다. DCF의 크기에 대한 비틀림 비정형의 효과는 작았다.

등분포 모멘트를 받는 아치의 횡 자유진동 (Effect of Initial Uniform Moment on Lateral Free Vibration of Arches)

  • 염응준;한택희;임남형;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 2002
  • Recently, arches are used structurally because of their high in-plane stiffness and strength, which result from their ability to transmit most of the applied loading by axial forces actions, so that the bending actions are reduced. On the other hand, the resistances of arches to (out-of-plane,) flexural-torsional behavior depend on the rigidities EI/sub y/, for lateral bending, GJ for Uniform torsion, and EI/sub w/ for warping torsion which are related to axial stress for flexural-torsional behavior. The resistance of an arch to out-of-plane behavior may be reduced by its in-plane curvature, and so it may require significant lateral bracing. Thus. it is supposed that In-plane preloading which cause an axial stress, have an effect on out-of-plane free vibration behavior of arches. Because axial stresses caused increase or decrease out-of-plane stiffness. But study about this substance is insufficient. In this thesis, We will study an effect of preloading on lateral free vibration of arches, using finite element method based on Kang and Yoo's curved beam theory (about curved beam element have 7 degree of freedom including warping) with FORTRAN programming.

  • PDF

다중 셀 박스형 교량에 대한 구조해석 모델의 비교연구 (A Comparative Study on Structural Modeling of Mullticellular Box Girder Bridges)

  • 김동욱;김상훈;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.325-332
    • /
    • 2001
  • Due to the rapidly developing computer technique, bridges can be modeled by using grillage method for analyzing the girder, or FEM for more accrute and detailed analysis. If the cells of multicellular decks are stiffened with diaphrams or cross-bracing at frequent intervals, to prevent them changing shape by distortion, the deck can be analysed like a beam if it is narrow, or like slab if it is wide. However it is often convenient and acceptable to use cellular structures and box-girders which do distort under shear and torsional loading, and it is then necessary to take account of the distortion in the method of calculation. But plane grillage method cannot cosider effect of distortion and FEM is non-economical because it is not easy to modeling and needs lots of time. So, this study suggests the Shear-flexible Grillage which reproduces the distortion behaviour of the cells.

  • PDF

횡방향 하중을 받는 I형강 단순보의 비탄성 좌굴거동 (Inelastic Buckling Behavior of Simply Supported I-Beam under Transverse Loading)

  • 이동식;오순택
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.155-167
    • /
    • 2004
  • 각각 집중하중과 등분포하중을 받는 단순보의 비탄성 횡-비틀림 좌굴에 대하여 연구하였다. 잔류응력을 단순형과 다항식형으로 하여 line-type 유한요소법으로 해석하였다. 잔류응력의 형태는 플랜지에서는 4차 곡선으로 웨브에서는 2차 곡선으로 가정하였다. 우리나라에서 생산되는 4종류의 I형강에 대하여 비탄성 횡-비틀림 좌굴에 대하여 해석한 후 결과를 강구조편람의 내용과 비교하였다. 해석결과로부터 강구조 편람에 의한 설계는 주보에 보조보가 있는 경우나 없는 경우 모두 전반적으로 과설계임을 알 수 있었다.

불균등 단부 모멘트를 받는 I형강의 비탄성 좌굴거동에 관한 연구 (Inelastic Buckling Behavior of I-Beam with Unequal End Moment)

  • 이동식;오순택
    • 한국강구조학회 논문집
    • /
    • 제16권2호통권69호
    • /
    • pp.257-265
    • /
    • 2004
  • line-type 유한요소법을 이용하여 불균등 단부 모멘트를 받는 보의 비탄성 좌굴 거동에 대하여 연구하였다. 잔류응력은 단순형과 다항식형 모델을 채택하였으며 잔류응력으로 인해 발생하는 단면의 불균등 항복을 고려하였다. 본 연구에서 얻어진 비탄성 횡-비틀림 좌굴에 대한 결과는 강구조편람의 허용응력법에 의한 설계 경우와 비교하였다. 결과적으로, 강구조편람에 의한 설계는 중지간 보에서 중간 브레이싱이 있는 경우나 없는 경우 모두 과설계가 됨을 알 수 있었다.

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.

Incomplete fabrication effects on represtressing preflex girders encased in concrete

  • Jeong, Euisuk;Lee, Hwan-Woo;Lee, Jaeha
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.67-77
    • /
    • 2022
  • In the current study, ordinary design of Represstessed Pre-Flex (RPF) girder by classical beam theory and numerical model taking buckled shape into consideration were compared with field-survey data to find imperfections on the RPF girder before prestressing and after preflexion. It should be noted that the ordinary design do not consider deformed shape of steel girder in RPF beam. The deformed shapes of steel girder due to the incomplete fabrication that could be caused by self-weight, preflexion misalignment, existence of lateral bracing at mid-span and stiffness of reaction frame were found using a newly developed model which was verified against a deformation survey conducted on actual RPF girder in the field. The final observed deformed shapes of RPF after concrete shrinkage and before prestressing were classified into W, C and Unsymmetric shapes in regard to both survey and analytical results. The deformation survey showed negligible amount of unwanted deformation compared to the large size of the RPF girders. The shallower width of the bottom flange of steel girder caused amount of lateral torsional buckling under self-weight and preflexion thereby affecting the unwanted final overall shape of the RPF girders. However, it was found that the unwanted deformation of RPF girders by fabrication errors even though it is negligible compared to the size of the girder, caused unsymmetrical stress contours in concrete and additional tensile stress and raise some safety issues.