• Title/Summary/Keyword: torque-twist behavior

Search Result 12, Processing Time 0.02 seconds

Torsional strengthening of RC beams using stainless steel wire mesh -Experimental and numerical study

  • Patel, Paresh V.;Raiyani, Sunil D.;Shah, Paurin J.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.391-401
    • /
    • 2018
  • Locally available Stainless Steel Wire Mesh (SSWM) bonded on a concrete surface with an epoxy resin is explored as an alternative method for the torsional strengthening of Reinforced Concrete (RC) beam in the present study. An experiment is conducted to understand the behavior of RC beams strengthened with a different configuration of SSWM wrapping subjected to pure torsion. The experimental investigation comprises of testing fourteen RC beams with cross section of $150mm{\times}150mm$ and length 1300 mm. The beams are reinforced with 4-10 mm diameter longitudinal bars and 2 leg-8 mm diameter stirrups at 150 mm c/c. Two beams without SSWM strengthening are used as control specimens and twelve beams are externally strengthened by six different SSWM wrapping configurations. The torsional moment and twist at first crack and at an ultimate stage as well as torque-twist behavior of SSWM strengthened specimens are compared with control specimens. Also the failure modes of the beams are observed. The rectangular beams strengthened with corner and diagonal strip wrapping configuration exhibited better enhancement in torsional capacity compared to other wrapping configurations. The numerical simulation of SSWM strengthened RC beam under pure torsion is carried out using finite element based software ABAQUS. Results of nonlinear finite element analysis are found in good agreement with experimental results.

Prestressed concrete beams under torsion-extension of the VATM and evaluation of constitutive relationships

  • Bernardo, Luis F.A.;Andrade, Jorge M.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.577-592
    • /
    • 2017
  • A computing procedure is presented to predict the ultimate behavior of prestressed beams under torsion. This computing procedure is based on an extension of the Variable Angle Truss-Model (VATM) to cover both longitudinal and transversal prestressed beams. Several constitutive relationships are tested to model the behavior of the concrete in compression in the struts and the behavior of the reinforcement in tension (both ordinary and prestress). The theoretical predictions of the maximum torque and corresponding twist are compared with some results from reported tests and with the predictions obtained from some codes of practice. One of the tested combinations of the relationships for the materials was found to give simultaneously the best predictions for the resistance torque and the corresponding twist of prestressed beams under torsion. When compared with the predictions from some codes of practice, the theoretical model which incorporates the referred combination of the relationships provides best values for the torsional strength and leads to more optimized designs.

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor Systems (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.52-56
    • /
    • 2011
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000lb class helicopter. Flexbeam and torque tube can be considered as the key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

  • PDF

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor System (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Doeg-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.187-192
    • /
    • 2012
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5 m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000 lb class helicopter. Flexbeam and torque tube can be considered as key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

A Study on Physical Characteristics of DTY and Elastic DTY - Characteristics of Tensile Properties and Shrinkage Ratio - (DTY 및 Elastic DTY사의 물성에 관한 연구 - 인장특성 및 수축률에 대하여 -)

  • 최재우;전병익
    • Textile Coloration and Finishing
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2001
  • Tensile and shrinkage characteristics of DTY, EDY and Macel were investigated experimentally. The drawn textured yarn(DTY) made by an existing belt type false twist and the elastic drawn textured yarn(EDY) made by non-torque false twist method modified from the belt type one. Macel was the yarn which had drawn and un-drawn arrangements. The tenacity of EDY had lower value than that of DTY. EDY had higher strethch than that of DTY. Especially Macel yarn had higher stretch than that of DTY compared with the same diameter of yarn. With time course behavior the tenacity and elongation of DTY and EDY had stabled tendency without variation. Before scouring Process, the wet and dry shrinkage patio of EDY load higher value than that of DTY. However, they decreased artier the process. At the same time, the stretch characteristic of EDY was significant as the diameter of yarn became higher.

  • PDF

Seismic behavior of steel reinforced concrete cross-shaped column under combined torsion

  • Chen, Zongping;Liu, Xiang
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • Experiments were performed to explore the hysteretic performance of steel reinforced concrete (SRC) cross-shaped columns. Nine specimens were designed and tested under the combined action of compression, flexure, shear and torsion. Torsion-bending ratio (i.e., 0, 0.14, 0.21) and steel forms (i.e., Solid - web steel, T - shaped steel, Channel steel) were considered in the test. Both failure processes and modes were obtained during the whole loading procedure. Based on experimental data, seismic indexes, such as bearing capacity, ductility and energy dissipation were investigated in detail. Experimental results suggest that depending on the torsion-bending ratio, failure modes of SRC cross-shaped columns are bending failure, flexure-torsion failure and torsion-shear failure. Shear - displacement hysteretic loops are fuller than torque - twist angle hysteretic curves. SRC cross-shaped columns exhibit good ductility and deformation capacity. In the range of test parameters, the existence of torque does not reduce the shear force but it reduces the displacement and bending energy dissipation capacity. What is more, the bending energy dissipation capacity increases with the rising of displacement level, while the torsion energy dissipation capacity decreases.

Behavior of CFRP strengthened RC multicell box girders under torsion

  • Majeed, Abeer A.;Allawi, Abbas A.;Chai, Kian H.;Badaruzzam, Hameedon W. Wan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.397-406
    • /
    • 2017
  • The use of fiber reinforced polymer (FRP) for torsional strengthening of reinforced concrete (RC) single cell box beams has been analyzed considerably by researchers worldwide. However, little attention has been paid to torsional strengthening of multicell box girders in terms of both experimental and numerical research. This paper reports the experimental work in an overall investigation for torsional strengthening of multicell box section RC girders with externally-bonded Carbon Fiber Reinforced Polymer CFRP strips. Numerical work was carried out using non-linear finite element modeling (FEM). Good agreement in terms of torque-twist behavior, steel and CFRP reinforcement responses, and crack patterns was achieved. The unique failure modes of all the specimens were modeled correctly as well.

Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites

  • Mohammed, Thaer Jasim;Abu Bakar, B.H.;Bunnori, N. Muhamad
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.123-136
    • /
    • 2015
  • The proposed techniques to repair concrete members such as steel plates, fiber-reinforced polymers or concrete have important deficiencies in adherence and durability. The use of ultra high performance fiber concrete (UHPFC) can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen reinforced concrete beams under torsion is investigated. Seven specimens of concrete beams reinforced with longitudinal and transverse reinforcements. One of these beams consider as control specimen while the others was strengthened by UHPFC on four, three, and two sides. This study includes experimental results of all beams with different types of configurations and thickness of UHPFC. As well as, finite element analysis was conducted in tandem with experimental test. Results reveal the effectiveness of the proposed technique at cracking and ultimate torque for different beam strengthening configurations, torque - twist graphs and crack patterns. The UHPFC can generally be used as an effective external torsional reinforcement for RC beams. It was noted that the behavior of the beams strengthen with UHPFC are better than the control beams. This increase was proportional to the retrofitted beam sides. The use of UHPFC had effect in delaying the growth of crack formation. The finite element analysis is reasonably agreement with the experimental data.

Hysteresis modelling of reinforced concrete columns under pure cyclic torsional loading

  • Mondal, Tarutal Ghosh;Kothamuthyala, Sriharsha R.;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • It has been observed in the past that, the reinforced concrete (RC) bridge columns are very often subjected to torsional moment in addition to flexure and shear during seismic vibration. Ignoring torsion in the design can trigger unexpected shear failure of the columns (Farhey et al. 1993). Performance based seismic design is a popular design philosophy which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and economical design under earthquake loading. However, very few investigations in the past focused on the development of analytical models to accurately predict the response of RC members under cyclic torsion. Previously developed hysteresis models are not readily applicable for torsional loading owing to significant pinching and stiffness degradation associated with torsion (Wang et al. 2014). The present study proposes an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular and square columns under torsion. The primary curve is obtained from mechanics based softened truss model for torsion. The proposed model is validated with test data of two circular and two square columns. A good correlation is observed between the predicted and measured torque-twist behavior and dissipated energy.

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.501-516
    • /
    • 2009
  • This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.