• Title/Summary/Keyword: torque sensing

Search Result 84, Processing Time 0.028 seconds

PRELIMINARY COMS AOCS DESIGN FOR OPTIMAL OPTICAL PAYLOADS OPERATIONS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hun-Hei;Ju, Gwang-Hyuk;Park, Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.290-293
    • /
    • 2006
  • COMS (Communication, Ocean and Meteorological Satellite) shall be operated with two remote sensing payloads, MI (Meteorological Imager) and GOCI (Geostationary Ocean Color Imager). Since both payloads have rotating mechanisms, the dynamic coupling between two payloads is very important considering the pointing stability during GOCI operation. In addition, COMS adopts a single solar wing to improve the image quality, which leads to the unbalanced solar pressure torque in COMS. As a result, the off-loading of the wheel momentum needs to be performed regularly (2 times per day). Since the frequent off-loading could affect MI/GOCI imaging performance, another suboptimal off-loading time needs to be considered to meet the AOCS design requirements of COMS while having margin enough in the number of thruster actuations. In this paper, preliminary analysis results on the pointing stability and the wheel off-loading time selection with respect to MI/GOCI operations are presented.

  • PDF

Angular Self-Sensing Algorithm of Lorentz Force Type Integrated Motor-Bearing System (로렌츠형 자기베어링 내장 전동기의 회전각 추정기)

  • Jeon, Han-Wook;Park, Sung-Ho;Park, Young-Jin;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.852-857
    • /
    • 2004
  • In this paper, an angular self-sensing algorithm is proposed and implemented to a Lorentz force type integrated motor-bearing system. It is based on the principle that the flux linkages of stator windings, calculated from the voltage and torque control current, are the functions of the rotor angle. The tracking angular position error is proven to vanish using the Lyapunov stability method, and the experimental results show that the initial error decays within about 5 seconds. It is found that the resolution of the algorithm remains about 1º over the speed range of 100 to 1000 rpm.

  • PDF

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control (직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF

Two-Arm Cooperative Assembly Using Force-Guided Control with Adaptive Accommodation (적응 순응성을 갖는 힘-가이드 제어 기법을 이용한 두 팔 로봇 협동 조립작업)

  • Choi, Jong-Dho;Kang, Sung-Chul;Kim, Mun-Sang;Lee, Chong-Won;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.298-308
    • /
    • 2000
  • In this paper a new two-arm cooperative assembly(or insertion) algorithm is proposed. As a force-guided control method for the cooperative assembly the adaptive accommodation controller is adopted since it does not require any complicated contact state analysis nor depends of the geometrical complexity of the assembly parts. Also the RMRC(resolved motion rate control) method using a relative jacobian is used to solve inverse kinematics for two manipulators. By using the relative jacobian the two cooperative redundant manipulators can be formed as a new single redundant manipulator. Two arms can perform a variety of insertion tasks by using a relative motion between their end effectors. A force/torque sensing model using an approximated penetration depth calculation a, is developed and used to compute a contact force/torque in the graphic assembly simulation . By using the adaptive accommodation controller and the force/torque sensing model both planar and a spatial cooperative assembly tasks have been successfully executed in the graphic simulation. Finally through a cooperative assembly task experiment using a humanoid robot CENTAUR which inserts a spatially bent pin into a hole its feasibility and applicability of the proposed algorithm verified.

  • PDF

Design and evaluation of small size six-axis force/torque sensor using parallel plate sturcture (병렬판구조를 이용한 소형 6축 힘/토크센서의 설계 및 특성평가)

  • Joo, Jin-Won;Na, Gi-Su;Kim, Gap-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.353-364
    • /
    • 1998
  • This paper describes the design processes and evaluation results of a small-sized six-axis force/torque sensor. The new six-axis force/torque sensor including S-type structure has been developed using a parallel plate structure as a basic sensing element. In order tominimize coupling errors, the location of strain gages has been determined based on the finite element analysis and the connections of strain gages have been made such that the bridge circuit with 4 strain gages becomes balanced. Several design modifications result in a similar strain sensitivity for six-axis forces and moments, and the reduced coupling errors of 2.6% FS between each forces and moments. Calibration test results show that the six-axis load cell developed which has light weight of 135g and the maximum capacities of 196 N in forces and 19.6 N.m in moments is estimated to be within 7.1% FS in coupling error.

Feed Rate Control for the Head-Feed Thresher (자동탈곡기(自動脱穀機)의 공급율(供給率) 제어(制御)(I) -공급율(供給率)에 따른 부하(負荷) 특성(特性)-)

  • Chung, C.J.;Ryu, K.H.;Choi, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.20-31
    • /
    • 1988
  • This study was undertaken to investigate the load characteristics of the head-feed thresher, which may be affected by various factors such as physical properties of grain, thresher design parameters and its operational condition. The study was conducted at an initial step toward developing an automatic feed-rate control system of the head-feed thresher. A microcomputer-based data acquisition system for the load-speed characteristic of the thresher-shaft and the rail-deflection of the feeding device in accordance with a varied feeding thickness was developed. The sensors being developed and used for sensing the torque and speed of the cylinder and the power-input-shaft and the feeding thickness showed a high accuracy. A microcomputer-based data acquisition system developed in this study was assessed as adequate for a rapid acquisition and analysis of data. The effect of the feed-rate on the torque and speed of the thresher shaft, when fed intermittently by bundles, affected not by the rice varieties but by the dryness of threshing material tested. When fed by the continuous constant thickness, the torque and speed of the cylinder due to the increase of the feed-rate or feeding thickness were given by the relation by the second order parabola.

  • PDF

Three-level Inverter Direct Torque Control of Induction Motor Based on Virtual Vectors

  • Tan Zhuohui;Li Yongdong;Hu Hu;Li Min;Chen Jie
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.369-373
    • /
    • 2001
  • Multilevel inverter has attracted great interest in high-voltage high-power field because of its less distorted output. In this paper, a direct torque control (DTC) technique based on a three-level neutral-point-clamped (NPC) inverter is presented. In order to solve the intrinsic neutral-point voltage-balancing problem and to obtain a high performance DTC, a special vector selection method is introduced and the concept of virtual vector is developed. By using the proposed PWM strategy, a MRAS speed sensor-less DTC drive can be achieved without sensing the neutral-point voltage, The strategy can be verified by simulation and experimental results.

  • PDF

Design and Implementation of Power Conversion Unit(PCU) for Motor of Electric Vehicle (전기자동차 모터구동용 전력변환장치(PCU) 설계 및 구현)

  • Kim, Mal-Soo;Kim, Seung-Mo;Huh, Nam-Euk;Oh, Seung-Jin;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents design and implementation of the PCU(150 kVA 3-Phase PWM Inverter for Electric Vehicles). For Implementation of the PCU, it is consist with Case, Connectors, IGBT module for PWM switching, DC-capacitor for dc-source, resolver for sensing of speed & position, and PCB board for control & gate-driver. Also, for the purpose of stable operation of the PCU in vehicle with variable torque condition in motor, current control scheme based on torque-map are developed. According to real-car test mode, the prototype of proposed the PCU is verified with performance and stability. Thus, design and implement of the PCU are discussed, and experimental results are presented in this paper.

  • PDF