• Title/Summary/Keyword: torque disturbance

Search Result 283, Processing Time 0.021 seconds

A Study on the Optimal Parameter Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기 적정 파라미터 선정에 관한 연구)

  • 조의상;김경철;최홍규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-72
    • /
    • 2001
  • Power system stabilizer act efficiently to damp the electromechanical oscillations in interconnected power systems. This paper presents an algorithm for the optimal parameter selection of a power system stabilizer in two-area power systems with a series HVDC link. This method is one of the classical techniques by allocating properly pole-zero positions to fit as closely as desired the ideal phase lead between the voltage reference and the generator electrical power and by changing the gain to produce a necessary damping torque over the matched frequency range. Control of HVDC converter and inverter are used a constant current loop. Proper parameters of PI controllers are obtain based on the Root-locus technique in other to have sufficient speed and stability margin to cope with charging reference values and disturbance. The small signal stability arid transient stability studies using the PSS parameters obtained from this method show that a natural oscillation frequency of the studycase system is adequately damped. Also the simulation results using the HVDC converter and inverter parameters obtained from this proposed method show proper current control characteristics. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

  • PDF

Self Tuning PI Controller of Induction Motor using Fuzzy Control (퍼지제어를 이용한 유도전동기의 자기동조 PI제어기)

  • Nam, Su-Myeong;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.173-175
    • /
    • 2004
  • This paper presents a novel design of a self tuning PI controller of induction motor using fuzzy control. In this approach, the fuzzy tuning of a PI controller gains is achieved through fuzzy rules deduced from many robustness simulation tests applied to several induction motors, for a variety of operating conditions such as response to speed command from standstill, step load torque application and speed variations, with nominal parameters and an changed rotor resistance, self inductance and inertia. Simulation results on a speed controller of induction motor are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Multi-PI Controller for High Performance Control of IPMSM Drive (IPMSM 드라이브의 고성능 제어를 위한 Multi-PI 제어기)

  • Ko, Jae-Sub;Park, Ki-Tae;Choi, Jung-Sik;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.91-93
    • /
    • 2007
  • This paper presents multi-PI controller of IPMSM drive using fuzzy and neural-network. In general, PI controller in computer numerically controlled machine process fixed gain. To increase the robustness, fred gain PI controller, Multi-PI controller proposes a new method based fuzzy and neural-network. Multi-PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Compensation Scheme for Dead Time and Inverter Nonlinearity Insensitive to IPMSM Parameter Variations (IPMSM 파라미터 변화에 영향 받지 않는 데드타임 및 인버터 비선형성 보상기법)

  • Park, Dong-Min;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.213-221
    • /
    • 2012
  • In a PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive, a dead time is inserted to prevent a breakdown of switching device caused by the short-circuit of DC link. This distorts the inverter output voltage resulting in a current distortion and torque ripple. In addition to the dead time, nonlinearity exists in switching devices of the PWM inverter, which is generally dependent on operating conditions such as the temperature, DC link voltage, and current. The voltage disturbance caused by the dead time and inverter nonlinearity directly influences on the inverter output performance, and it is known to be more severe at low speed. In this paper, a new compensation scheme for the dead time and inverter nonlinearity under the parameter variation is proposed for a PWM inverter-fed IPMSM drive. The overall system is implemented using DSP TMS320F28335 and the validity of the proposed algorithm is verified through the simulation and experiments.

Vibration response of the boat composite shafting having constant velocity joint during change of the operation regime

  • Shuripa, V.-A;Kim, J.-R;Kil, B.-L;Kim, Y.-H;Jeon, H.-J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.382-392
    • /
    • 2004
  • The usage of constant velocity (CV) joint is effective for motorboats on gliding regime of the motion. During transition on the gliding when angle of the CV differs from null on driving and driven composite shafts there are moments of the second order. Excitation of oscillations of the second order moments occurs when driving shafts transmits a variable torque. which generates through CV joint a lateral moment acting on the bearing. As a result of oscillations from a resonating harmonic of a shafting the harmonic with the greater or periodically varying amplitude for power condition trough transferring to nominal power 144kW. Beating conditions coincide with third mode having frequency 45.486 Hz. In that case there is high increasing of the equivalent stresses. The forming of the stiffness of the composite material is concerned to use most orientation of the layer angle in the range of $\pm$60 degrees relatively of shaft axis. Application of that angles for layer orientation gives possibility to avoid high disturbance of the shafting for motorboat transition regime.

Anti-Slip Control By Adhesion Effort Estimation Of Minimized Railway Vehicle (축소형 철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • Jeon K.Y.;Lee S.H.;Kang S.W.;Oh B.H.;Lee H.G.;Kim Y.J.;Han K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.536-539
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

The Development of Velocity Ripple Controller Using Active Phase Compensation (능동형 위상보정을 이용한 정밀 속도리플 제어기의 개발)

  • Kang, Seok Il;Jeong, Jae Hyeon;Kim, Jung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.265-272
    • /
    • 2017
  • Velocity ripple in manufacturing processes reduces productivity and limits the precision of the product. In practice, the frequency and phase of velocity ripples always change minutely, which makes it impossible to compensate for the ripple by simply inserting an opposite feed-forward signal in the system. In this study, an active-phase compensation algorithm was developed to enable the velocity-ripple controller to track the phase change of the ripples in real time. The proposed controller can compensate for the velocity ripple whatever its cause, including disturbance by the torque ripple. The algorithm consists of three functional modules: the velocity-ripple extractor, the synchronized integrator, and the phase shifter. Experimental results showed that the proposed controller clearly reduces velocity ripples with phase variation.

Optimized blade of small vertical axis wind turbine and its vortex structure analysis (수직축 풍력 터빈 블레이드의 최적화 설계 및 Vortex 구조 분석)

  • Na, Jisung;Ko, Seungchul;Sun, Sanggyu;Bang, Yusuk;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Sensitivity studies of blade angle and twisted angle are numerically investigated to optimize the Savonius blade. As blade angle increases, the contact area between blade and wind decreases, showing the suppression of the vortex generation near blade. Compared to the blade angle of 0 degree, the blade angle of 20 degree shows about 2.6% increment of power efficiency. Based on the blade angle of 20 degree, sensitivity studies of the twisted angle are performed. The result indicates that the adjustment of the twisted angle causes the torque of blade to increase. Optimized blade can suppress the formation of the vortex structure in rear region. Also, wind flows without disturbance of vortex when passing through the optimized blade. The 1kw vertical wind turbine system with optimized blade can generate 4442.2kWh per year and have 53% capacity factor.

Position Synchronous Control of a Two-Axes Driving System by H$\infty$ Approch (H$\infty$ 제어기법을 이용한 2축 구동 시스템의 위치동기제어)

  • Byun, Jung-Hoan;Yeo, Dong-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers and one synchronous controller. The speed controllers based on PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order that speed response of the second axis corresponds with one of first axis. Especially, considering to model uncertainties of each axis, the synchronous controller has been designed using H$\infty$ control theory. The controller eliminates the synchronous error by controlling speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF