• 제목/요약/키워드: torque density

검색결과 307건 처리시간 0.021초

단상 유도동기전동기의 기동 특성 개선을 위한 회전자 바 형상 설계 (The Design of Rotor Bars of Single-Phase Line-Start Permanent Magnet Motor for Improving Starting Characteristics)

  • 이철규;권순효;양병렬;권병일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권8호
    • /
    • pp.370-376
    • /
    • 2005
  • The single-phase induction motor is simple and durable, but the efficiency is low. Therefore, electric motors like HLDC and LSPM(line-start permanent magnet motor) that use the permanent magnet have been studied. The most advantages of single-phase LSPM is having the same stator as the stator of the single-phase induction motor and permanent magnets are just inserted in the squirrel cage rotor of the single-phase induction motor. But the characteristics of single-phase LSPM synchronous motor has very complex characteristics until the synchronization and if the design is not suitable, the single-phase LSPM synchronous motor cannot be synchronized. We designed a single-phase LSPM using the same stator and winding as the conventional single-phase induction motor, but newly designed the permanent magnets considering air gap magnetic flux density. The transient characteristics of the single-phase LSPM is not good because of a magnetic breaking torque, however, it can be improved by redesigning the rotor bars. We are proposed the design method of rotor bar for the single-phase LSPM to start softly and to make synchronization easily.

Active Mechanical Vibration Control of Rotary Compressors for Air-conditioning Systems

  • Park, Cheon-Su;Kim, SeHwan;Park, Gwi-Geun;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.1003-1010
    • /
    • 2012
  • Recent power electronics and variable-frequency motor drive technologies have been applied to air conditioners to improve efficiency and power density. However, the mechanical vibrations and acoustic noise resulting from the compressor still remain as a serious problem. This paper presents the development and implementation of an online disturbance state-filter for the suppression of multiple unknown and time-varying vibrations of air conditioning systems. The proposed design has a form of the state-filter based on a Luenburger-style closed-loop speed observer. An active vibration decoupling strategy with an estimated disturbance is provided, which manipulates a motor torque command. Since the proposed estimation does not require any additional transducers or hardware for obtaining real-time information upon disturbances, it is suitable for retrofitting industrial air conditioners.

JOINING OF THIN-WALLED ALUMINUM TUBE BY ELECTROMAGNETIC FORMING (EMF)

  • PARK Y.-B.;KIM H.-Y.;OH S.-I.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.519-527
    • /
    • 2005
  • Recently, weight reduction of vehicles has been of great interest and consequently the use of low-density materials in the automotive industry is increasing every year. However, the substitution of one material for another is not simple because it accompanies several problems, for example, weakness in the strength and stiffness and difficulty in the joining. To overcome these problems, the structure of the automobile redesigned totoally. Aluminum spaceframe is rapidly being adopted as a body structure for accommodating lightness, stiffness and strength requirement. In aluminum spaceframe manufacturing, it is often required to join aluminum tube. However, there are few suitable methods for joining aluminum tube, so that much interest has been focused on testing suitable joining methods. Joining by electromagnetic forming (EMF) can be useful method in joining aluminum tube, which offers some advantages compared with the conventional joining methods. In this paper, joining by EMF was investigated as a pre-study for applying an automotive spaceframe. Finite element simulations and strength tests were performed to analyze the influence of geometric parameters on joint strength. Based on these results, configurations of axial joint and torque joint were suggested and guidelines for designing EMF joint were established.

4륜 직접구동 전기자동차의 제어에 관한 연구 (A Study on the Control of 4WD EV)

  • 정유석;전범진;설승기;정진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.172-174
    • /
    • 1994
  • Due to the environmental considerations and the energy crisis, there has been a revival of electric vehicles since 1960s. Research and development work concerning with electric vehicles (EVs) was becoming more intense in last decade. As compared with conventional internal combustion engine (ICE) cars, EVs have the advantages of clean, quiet, better energy efficiency, less maintenance and improving the load factor of electric power systems. However, EVs usually have a snort running range, bad acceleration performance and high initial cost. The main reason for these shortcomings is the low figure of energy density and the high per energy cost of battery at present technology state. So it is very important to optimize the overall drive system design with respect to the maximum utilization of battery, energy, motor torque and inverter power. This paper describes a demonstration model of electric car which is driven by 4-wheel direct method using the vector control.

  • PDF

Characteristic Analysis and Experimental Verification of the Axially Asymmetric Structured Outer-Rotor Type Permanent Magnet Motor

  • Seo, Myung-Ki;Lee, Tae-Yong;Park, Kyungsoo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.898-904
    • /
    • 2016
  • In this study, we have dealt with a design characteristic of outer-rotor type permanent magnet (PM) motor applied for Engine Cooling Fan (ECF). When we design a motor with structure like this type, it is required as a requisite to consider 3-Dimensional (3-D) effect by implementing a non-linear Finite Element Analysis (FEA) due to a yoke-ceiling, which is perpendicular to the axis of rotation. We have analyzed identical models under three different conditions. The analysis has been performed through a non-linear 2-Dimensional (2-D) and 3-D FEA. Finally, the results have been compared with Back Electro-Motive Force (BEMF) value of actual motor model. As a result, a yoke-ceiling function as an additional flux path and the operating point on B-H curve of rotor material is shifted to non-saturation region relatively. Accordingly, magnetic flux linkage can be increased and motor size can be decreased under same input condition to satisfy ECF specification, such as torque.

소형 및 저비용화를 위한 전자석-스프링 구동장치 연구 (A Study on Electromagnetic-Spring Actuator for Low Cost Miniature Actuators)

  • 김세웅;이창섭;최현영
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.392-400
    • /
    • 2019
  • This paper provides a fin actuation system of missile based on electromagnetic-spring mechanism to miniaturize the system and lower the cost. Compared with proportional electro-mechanical actuators, the output of Electromagnetic-Spring Actuators(EMSA) has two or three discrete states, but the mechanical configuration of EMSA is simple since it does not need power trains like gears. The simple mechanism of EMSA makes it easy to build small size, low cost, and relatively high torque actuators. However, fast response time is required to improve the dynamic performance and accuracy of missiles since bang-off-bang operation of EMSA affects the flight performance of missile. In this paper the development of EMSA including parameter optimization and mathematical modeling is described. The simulation results using Simulink and experimental test results of prototype EMSAs are presented.

The Origin of the Spin-Orbit Alignment of Galaxy Pairs

  • Moon, Jun-Sung;An, Sung-Ho;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.28.3-29
    • /
    • 2021
  • Galaxies are not just randomly distributed in space; instead, a variety of galaxy alignments have been found over a wide range of scales. Such alignments are the outcome of the combined effect of interacting neighbors and the surrounding large-scale structure. Here, we focus on the spin-orbit alignment (SOA) of galaxy pairs, the dynamical coherence between the spin of a target galaxy and the orbital angular momentum of its neighbor. Based on a recent cosmological hydrodynamic simulation, the IllustrisTNG project, we identify paired galaxies with mass ratios from 1/10 to 10 at z = 0 and statistically analyze their spin-orbit angle distribution. We find a clear preference for prograde orientations (i.e., SOA), which is more prominent for closer pairs. The SOA is stronger for less massive targets in lower-density regions. The SOA witnessed at z = 0 has been developed progressively since z = 2. There is a clear positive correlation between the alignment strength and the interaction duration with its current neighbor. Our results suggest the scenario in which the SOA is developed mainly by interactions with a neighbor for an extended period of time, rather than by the primordial torque exerted by the large-scale structure.

  • PDF

임플란트의 직경, 길이 및 디자인변화가 임플란트 안정성지수(ISQ)에 미치는 영향 (The influence of implant diameter, length and design changes on implant stability quotient (ISQ) value in artificial bone)

  • 이정열;이원창;김민수;김종은;신상완
    • 대한치과보철학회지
    • /
    • 제50권4호
    • /
    • pp.292-298
    • /
    • 2012
  • 연구 목적: 이 연구의 목적은 임플란트의 직경, 길이 및 디자인의 변화가 임플란트 안정성 지수에 미치는 영향을 비교하는 것이다. 연구 재료 및 방법: 골질차이에 의한 변수를 제거하기 위해 상악골 평균밀도와 유사한 균일한(0.48g /$cm^3$) 밀도를 가진 Polyuretane foam blocks (Sawbones$^{(R)}$, Pacific Research Laboratories Inc, Vashon, Washington)을 이용, 임플란트(Implantium$^{(R)}$, Dentium, Seoul, Korea)를 다양한 직경(${\phi}3.8$, ${\phi}4.3$${\phi}4.8$)과 길이(8, 10 및 12 mm)로 식립하여 그 변화가 임플란트 안정성 지수(Implant Stability Quotient, ISQ)에 미치는 영향을 비교하였다. 또 같은 직경과 길이(${\phi}4.3{\times}10mm$)에서 submerged와 non-submerged (SimplelineII$^{(R)}$, Dentium, Seoul, Korea) 디자인이 ISQ 에 미치는 영향을 비교하였다. 식립 회전력의 영향을 배제하기 위해 동일한 35 N의 Torque로 각 실험군당 10개씩 총 60개의 임플란트를 식립하였다. Osstell$^{TM}$ mentor(Integration Diagnostic AB, Sweden)를 이용하여 공진주파수를 측정한 후 ISQ 값으로 기록하였고, 그 결과를 one-way ANOVA와 Tukey HSD test로 분석하였다(${\alpha}$=.05). 결과: 1. 임플란트 직경의 변화는 ISQ에 영향을 미치지 않았으나(P>.05), 임플란트 길이가 증가함에 따라 ISQ도 증가하였다(P<.001). 2. 임플란트 디자인의 변화는 ISQ와 유의한 상관관계를 보여 Submerged 디자인의 ISQ가 non-submerged 디자인보다 높게 나타났다(P<.05). 결론: 임플란트 안정성을 높이기 위해서는 가능한 길이가 긴 임플란트를 식립하는 것이 유리하며, 같은 길이의 임플란트에서 볼 때 Non-submerged 디자인보다 submerged 디자인이 더 높은 ISQ를 얻을 수 있을 것으로 생각된다.

골결손부가 있는 발치직후 매식 임플란트에서 탈회동결건조골과 GTAM차단막이 골재생에 미치는 영향 (EFFECT OF DFDB AND GTAM BARRIERS ON BONE REGENERATION AROUND IMMEDIATE IMPLANTS PLACED IN SURGICALLY DFFECTIVE SOCKET)

  • 김형수;양홍서
    • 대한치과보철학회지
    • /
    • 제35권1호
    • /
    • pp.43-66
    • /
    • 1997
  • Dental implant may be immediately placed in postextraction socket which has alveolar bone defect. The purpose of this study was to compare the bone regeneration and bone quality around defects adjacent to implants that were placed into extraction sockets according to EFEB, GTAM barrier and GTAM barrier with DFDB. Mandibular P2, P3 and P4 were extracted bilaterally in dogs, and buccal defects were created about 4mm in depth and 3.3mm in width. Screwed pure titanium implants, 3.8mm in diameter and 10mm in length, were placed into the extraction sockets. The experimental groups were divided into four groups : the G group was covered with a GTAM barrier on the defective area, the D+G group was filled with DFEB and covered with a GTAM barrier, the D group was filled with DFDB only and the control group was sutured without any special treatment on the defective area. The experimental animals were killed after 12 weeks and specimens were prepared for light microscopic evaluation and fluorescent dyes were administered daily for 2 weeks after implantation, and injected on the 4th and 11th week for fluorescent microscopic examination to observe new bone formation and bone remodeling. The new Bone height of the buccal defect was measured and compared with the another for bone gain and the removal torque for the implant was measured for the comparison of bone density and bone-implant osseointegration. Results obtained were as follows : 1. Experimental groups showed bone regeneration in oder from D+G, G, D group and control. D+G and G group was significantly from D group and control(P<0.01). 2. In the defective area of control the regenerated alveolar bone showed poorly developed lamellated structure and fibrous tissue intervention into the bone-implant interface but the others showed well developed lamellated structure and osseointegration. 3. All implant groups showed no significaant difference in the removal torque for implant(P>0.05) These results suggest that immediate implants placed in defective sockets were successfully osseointegrated and utilizing placed in defective sockets were successfully osseointegrated and utilizing not only the combination of GTAM and DFDB but also only the GTAM was favorable for the predictable regeneration of the defective area.

  • PDF

Near-Five-Vector SVPWM Algorithm for Five-Phase Six-Leg Inverters under Unbalanced Load Conditions

  • Zheng, Ping;Wang, Pengfei;Sui, Yi;Tong, Chengde;Wu, Fan;Li, Tiecai
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.61-73
    • /
    • 2014
  • Multiphase machines are characterized by high power density, enhanced fault-tolerant capacity, and low torque pulsation. For a voltage source inverter supplied multiphase machine, the probability of load imbalances becomes greater and unwanted low-order stator voltage harmonics occur. This paper deals with the PWM control of multiphase inverters under unbalanced load conditions and it proposes a novel near-five-vector SVPWM algorithm based on the five-phase six-leg inverter. The proposed algorithm can output symmetrical phase voltages under unbalanced load conditions, which is not possible for the conventional SVPWM algorithms based on the five-phase five-leg inverters. The cause of extra harmonics in the phase voltages is analyzed, and an xy coordinate system orthogonal to the ${\alpha}{\beta}z$ coordinate system is introduced to eliminate low-order harmonics in the output phase voltages. Moreover, the digital implementation of the near-five-vector SVPWM algorithm is discussed, and the optimal approach with reduced complexity and low execution time is elaborated. A comparison of the proposed algorithm and other existing PWM algorithms is provided, and the pros and cons of the proposed algorithm are concluded. Simulation and experimental results are also given. It is shown that the proposed algorithm works well under unbalanced load conditions. However, its maximum modulation index is reduced by 5.15% in the linear modulation region, and its algorithm complexity and memory requirement increase. The basic principle in this paper can be easily extended to other inverters with different phase numbers.