• Title/Summary/Keyword: torque density/ripple

Search Result 58, Processing Time 0.028 seconds

Optimum Design Criteria for Maximum Torque Density and Minimum Torque Ripple of Flux Switching Motor using Response Surface Methodology

  • Lee, Jung-Ho;Lee, Tae-Hoon
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.74-77
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of a Flux Switching Motor (FSM) using response surface methodology (RSM) & finite element method (FEM). The focus of this paper is to find a design solution through the comparison of torque density and torque ripple which vary with rotor shape. And then, a central composite design (CCD) mixed resolution was introduced and analysis of variance (ANOVA) was conducted to determine the significance of the fitted regression model. The proposed procedure allows one to define the rotor dimensions, starting from an existing motor or a preliminary design.

Electromagnetic Structure Design Study of Fault-Tolerant Interior Permanent Magnet Machines for Electric Vehicles Using Harmonic Order Shaping

  • Liu, Guohai;Zeng, Yu;Zhao, Wenxiang;Chen, Qian
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.561-569
    • /
    • 2016
  • Although pretty methods have been proposed to reduce torque ripple, they generally suffer from the decreased torque density. This paper will investigate the spoke-type interior permanent magnet (IPM) machine with shaping methods, including the sinusoidal (SIN), the inverse cosine (ICS), the sinusoidal with third harmonic (SIN+3rd), and the inverse cosine with third harmonic (ICS+3rd). In order to obtain low torque ripple and high torque density, the shaping method applied in rotor and stator at the same time, termed as the dual-shaping method, is proposed. This method is analytically derived and further confirmed by finite element method (FEM). It turns out that the ICS and ICS+3rd shaping methods are more suitable for outer rotors, while the SIN and the SIN+3rd shaping method should be used in inner stators. The original machine, the singular shaped machines and the dual-shaped machines on electromagnetic performances are compared for evaluation. The results verify that the dual-shaping method can improve torque density, whilst reducing torque ripple.

Design of single phase SRM for the Blower considering the Torque Ripple (토오크 리플을 고려한 송풍기 구동용 단상 SRM의 설계)

  • Lee, Jong-Han;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.101-103
    • /
    • 2004
  • The single phase switched reluctance motor has many merits in practical use because it has simple operating drives and control systems, very high energy density per unit volume comparing with three phase SRM. But it has also problems which is a starting device and torque ripple. One of the major problems is torque ripple which causes increased undesirable acoustic noise and possibly speed ripple. This paper describes an approach to determine optimum magnetic circuit parameters to minimize the torque ripple.

  • PDF

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of Flux Switching Motor using RSM & FEM (반응표면법과 유한요소법을 이용한 플럭스 스위칭 전동기의 최대토크밀도와 최저토크리플을 위한 최적설계)

  • Kim, Young-Hyun;Lee, Jung-Ho;Kim, Nam-Hoon;Koo, Bon-Sam;Kim, Chan-Hui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.549-554
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of Flux Switching Motor using RSM & FEM (반응표면법과 유한요소법을 이용한 플럭스 스위칭 전동기의 최대토크밀도와 최저토크리플을 위한 최적설계)

  • Kim, Young-Hyun;Yun, Tae-Won;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.414.1_415.1
    • /
    • 2009
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of SynRM according to the Rated Wattage using Response Surface Methodology (반응표면법을 이용한 동기형 릴럭턴스 전동기의 고토크밀도 및 저토크리플을 위한 용량별 최적설계)

  • Choi, Yun-Chul;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1777-1781
    • /
    • 2008
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Synchronous Reluctance Motor (SynRM) according to the rated wattage using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering of a number of interaction of design variables. The proposed procedure allows the definition of the rotor shape according to flux barrier number, starting from an existing motor or a preliminary design.

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of SynRM according to the Rated Wattage using Response Surface Methodology (반응표면법을 이용한 동기형 릴럭턴스 전동기의 고토크밀도 및 저토크리플을 위한 용량별 최적설계)

  • Choi, Yun-Chul;Mun, Sung-Ju;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.780-781
    • /
    • 2008
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Synchronous Reluctance Motor (SynRM) according to the rated wattage using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. The proposed procedure allows to define the rotor optimum shape for maximum torque density & minimum torque ripple starting from an existing motor or a preliminary design.

  • PDF

Optimum Geometric and Electrical Parameter for Minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Choi, Jae-Hak;Kim, Sol;Lee, Kab-Jae;Lee, Ju;Hong, Kyung-Jin;Choi, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.93-100
    • /
    • 2003
  • Switched reluctance motor(SRM) has some advantages such as low cost, high torque density but SRM has essentially high torque ripple due to its salient structure. In order to apply SRM to industrial field, torque ripple has to be reduced. This paper introduces optimal design process of SRM using an optimization algorithm of Progressive Quadratic Response Surface Modeling(PQRSM) and two-dimensional(2D) Finite Element Method(FEM). The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, it can be obtained both the optimal design minimized torque ripple and the optima1 design maximized the average torque, respectively. Finally, this Paper Presents Performance comparison of two optimal designs and consider influence of the selected design variables in torque characteristics.

Improved Torque Ripple Through Pole Piece Deformation of Gear Ratio Transformed Magnetic Gear (폴피스 변형을 통한 기어비 변환형 마그네틱 기어의 토크 리플 개선)

  • Beom-Seok Byeon;Eui-Jong Park;Yong-Jae Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • This paper introduces a study on an electromagnet magnetic gear designed for gear ratio conversion. In comparison to magnetic gears using permanent magnets, this electromagnet magnetic gear exhibits lower torque density, highlighting the need for torque density improvement. To address this, the research focuses on enhancing torque density by examining the consistent orientation of each rotor's magnetization during gear ratio conversion and attaching permanent magnets accordingly. However, an issue arises due to the uneven magnetic flux density caused by the non-uniform attachment of permanent magnets, leading to an increase in torque ripple. Therefore, building upon previous studies aimed at reducing torque ripple in electromagnet magnetic gears, this research explores the optimal methods, such as pole piece bridges and fillet configurations, to mitigate torque ripple even during gear ratio conversion.

Optimum Rotor Shaping for Torque Improvement of Double Stator Switched Reluctance Motor

  • Tavakkoli, Mohammadali;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1315-1323
    • /
    • 2014
  • Although the power density in Double Stator Switched Reluctance Motor (DSSRM) has been improved, the torque ripple is still very high. So, it is important to reduce the torque ripple for specific applications such as Electric Vehicles (EVs). In This paper, an effective rotor shaping optimization technique for torque ripple reduction of DSSRM is presented. This method leads to the lower torque pulsation without significant reduction in the average torque. The method is based on shape optimization of the rotor using Finite Element Method and Taguchi's optimization method for rotor reshaping for redistribution of the flux so that the phase inductance profile has smoother variation as the rotor poles move into alignment with excited stator poles. To check on new design robustness, mechanical analysis was used to evaluate structural conformity against local electromagnetic forces which cause vibration and deformation. The results show that this shape optimization technique has profound effect on the torque ripple reduction.