• Title/Summary/Keyword: torque control.

Search Result 2,916, Processing Time 0.031 seconds

Comparison of marginal and internal fit of zirconia abutments with titanium abutments in internal hexagonal implants (내부육각 연결형 임플란트에서 지르코니아 지대주와 티타늄 지대주의 변연 및 내면 적합도의 비교)

  • Kim, Young-Ho;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.93-102
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the fit accuracy of two zirconia and titanium abutments in internal hexagonal implants. Materials and methods: One titanium abutment and two zirconia abutments were tested in internal hexagonal implants (TSV, Zimmer). Prefabricated zirconia abutments (ZirAce, Acucera) and customized zirconia abutments milled by the Zirkonzahn system (Zirkonzahn Max, Zirkonzahn) were selected and prefabricated titanium abutments (Hex-Lock, Zimmer) were used as a control. Eight abutments per group were connected to implants with 30 Ncm torque. The marginal gaps at abutment-implant interface, the internal gaps at internal hex, vertical and horizontal gaps between screws and screw seats in abutments were measured after sectioning the embedded specimens using a scanning electron microscope. Data analysis included one-way analysis of variance and the Scheffe test (n=16, ${\alpha}=0.05$). Results: The mean marginal gap of customized zirconia abutment was higher than those of two prefabricated zirconia and titanium abutments. The internal gaps at internal hex showed no significant differences between customized and prefabricated abutments and were higher than those of prefabricated titanium abutments. The mean vertical and horizontal gaps at screw in prefabricated zirconia abutment were higher than those of prefabricated titanium abutment. In the case of customized zirconia abutment, the mean horizontal gap at screw was higher than those of both the prefabricated zirconia and the titanium abutment but the mean vertical gap was not even measureable. The screw seats were clearly formed but did not match with abutment screws in prefabricated zirconia abutments. They were not, however, precisely formed in the case of customized zirconia abutments. Conclusion: Within the limitations of this study, the prefabricated titanium abutments showed better fit than the zirconia abutments, regardless of customized or prefabricated. Also, the customized zirconia abutments showed significantly higher marginal gaps and the fit was less accurate between screws and screw seats than the prefabricated abutments, titanium and zirconia.

Development of a Mobile Tower-yarder with Tractor (I) - Design and Manufacture - (트랙터부착형 타워집재기 개발(I) - 설계 및 제작-)

  • Park, Sang-Jun;Kim, Bo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This study was conducted to develop a mobile tower-yarder with tractor for agriculture and forestry that is the efficient yarder in steep terrains, thinning operation and small scale logging operation. It was designed and manufactured that the power source of tower-yarder is equiped three hydraulic pump connected to PTO of tractor, and three hydraulic pump is used to operate the four motor for drum, the cylinder for clutch of interlocker, the cylinder for tower expanding and the out-rigger cylinder. It was to adopt the running skyline system and the inter-lock function, and to equip the double capstan drum, the storage drum and the clutch for interlock in the development of tower-yarder. It was to develop the tower-yarder which the winch torque of double-capstan drum, the traction force of double-capstan drum, the number of rotation of double-capstan drum and the line speed is $191kg{\cdot}m$, 1,910 kgf, 220.5 rpm and 138.5 m/min, respectively. And it was known that the optimum flange diameter of the main and haulback storage drum is about 360 mm and about 460 mm in order to storage the main line length of 250m and the haulback line length of 450 m. The carriage was made to adopt the running skyline system and to equip the lock function in order to the convenience of chocking and the fall down preventing of tree. It was provided to develop the wire remote controller for the inter-lock function, the convenience of control and the efficiency of yarding. In development process, this tower-yarder was attached the 3-point linkage hitch equipment and the tire wheel for the traction and moving of tower-yarder. Also, it was equipped that the out-rigger and the guy line in order to raise the safety and efficiency of yarding of tower-yarder.

PHOTOELASTIC ANALYSIS OF STRESS INDUCED BY FIXED PROSTHESES WITH RIGID OF NONRIGID CONNECTION BETWEEN NATURAL TOOTH AND OSSEOINTEGRATED IMPLANT (골육착성 보철 치료시 임플랜트와 자연 지대치와의 연결 방법에 따른 관탄성 응력 분석)

  • Kim, Young-Il;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.271-300
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution at supporting bone according to the types of connection modality between implant and tooth in the superstrcture. This investigation evaluated the stress patterns in a photoelastic model produced by three different types of dental implants such as Branemark, Steri-Oss, IMZ and resin tooth using the techniques of quasi three dimensional photoelasticity. The teeth-supported bridge had a first molar pontic supported by second premolar and second molar as a control group. The implant and toothsupported bridge had a first molar pontic supported by second premolar and implant posterior retainer as an experimental group. Prostheses were mechanically connected to an adjacent second premolar by the rigid of nonrigid connection, Nonrigid connection used an attachment placed between the tooth-supported and fixture-supported component. The female(keyway) of attachment was placed on the distal end of the retainer supported by the tooth ; the male(Key) of attachment connected to the osseointegrated bridge was engaged into the keyway. All prostheses were casted in the same nonprecious alloy and were cemented and screwed on their respective abutments and implants. 16㎏ of vertical loads on central fossae of second premolar, first molar pontic, implant of second molar were applied respectively and 6.5㎏ of inclined load on middle buccal surface of first molar pontic was applied. The results were as follows : 1. Under the vertical load on the central fossa of first mloar pontic, the stress developed at the apex of tooth of implat was more uniformly distributed in the case of nonrigid connection than in the case of rigid connection. 2. Under the vertical load on the central fossa of first molar pontic, the stress developed around the cervical area of tooth of implant was larger in the case of rigid connection than in the case of nonrigid connection because the bending moment was more occured in the case of rigid connection than in the case of nonrigid connection. 3. Stress was more restricted to the loaded side of nonrigid connection than to that of rigid connection 4. Under the inclined load. The set screw loosening of implant was more easily occured in the case of nonrigid connection than in the case of rigid connection due to torque moment. 5. In the case of Branemark implant, the stress concentration in second premolar was larger and the stress developed around the cervical area of implant was lower than any other cases under the vertical load, because Branemark implant with the flexible gold screw was showed in incline toward second premolar by a bending moment. 6. The stress developed around the apex of tooth or implant was more uniformly distributed in the case of Steri-Oss implant with stiff screw than in the case of Branemark implant under the vertical load. But, the stress developed around the cervical area of the Steri-Oss implant was larger than that of any other implants because bending moment was occured by vertical migration of second premolar. 7. The stress distribution in the case of IMZ implant was similar to the case of natural teeth under small vertical load. But, the residual stress around the implant was showed to occurdue to deformation of IMC and sinking of screw under larger vertical load.

  • PDF

Stress distributions at the Periodontal ligament and displacements of the maxillary first molar under various molar angulation and rotation . Three dimensional finite element study (구치의 경사도와 회전정도가 발치공간 폐쇄시 치근막의 응력분포와 치아의 초기이동에 미치는 영향에 대한 3차원 유한요소법적 연구)

  • Kwon, Dae-Woo;Son, Woo-Sung;Yang, Hoon-Chul
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.417-428
    • /
    • 2004
  • The purpose of this study was to evaluate the stress distributions at the periodontal ligament (PDL) and displacements of the maxillary first molar when mesially directed force was applied under various molar angulations and rotations. A three dimensional finite element model of the maxiilary first molar and its periodontal ligament was made Upright position, mesially angulated position by $20^{\circ}$ and distally angulated position of the same degree were simulated to investigate the effect of molar angulation. An anteriorly directed force of 200g countertipping moment of 1,800gm-mm (9:1 moment/force ratio) and counterrotation moment of 1,000gm-mm (5:1 moment/force ratio) were applied in each situation. To evaluate the effect of molar rotation on the stress distribution, mesial-in rotation by $20^{\circ}$ and the same amount of distal-in rotation were simulated. The same force and moments were applied in each situation. The results were as follows: In all situations, there was no significant difference in mesially directed tooth displacement Also, any differences in stress distributions could not be found, in other words. there were no different mesial movements. Stress distributions and tooth displacement of the $20^{\circ}$ mesially angulated situation were very similar with those of the $20^{\circ}$ distal-in rotated situation. The same phenomenon was obserned between the $20^{\circ}$ distally angulated situation and $20^{\circ}$ mesial-in rotated situation. When the tooth was mesially angulated, or distal-in rotated, mesially directed force made the tooth rotate in the coronal plane. with its roots moving buccally, and its crown moving lingually. When the tooth was distally angulated, or mesial-in rotated, mesially directed force made the tooth rotate in the coronal plane, with its roots moving lingually and its crown moving buccally. When force is applied to au angulated or rotated molar, the orthodontist should understand that additional torque control is needed to prevent unwanted tooth rotation in the coronal plane.

Effect of Nurida-Ball exercise on muscle function, spinal alignment, and dynamic balance capacity in Middle-Aged Men (누리다 볼 운동이 중년 남성의 근기능, 척추정렬 및 동적 균형능력에 미치는 영향)

  • Choi, Dong-Hun;Kim, Tae-Kyung;Park, Jae-Myoung;Jung, Jong-Hwan;Yeom, Dong-Chul;Cho, In-Ho;Cho, Joon-Yong;Koo, Jung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1556-1566
    • /
    • 2020
  • The purpose of this study was to investigate the effect of Nurida-Ball exercise on isokinetic muscle function, spinal alignment, and dynamic balance capacity in middle-aged men. All middle-aged men(n=16) were divided into 2 groups: Ball exercise(BE, n=8) and control(CON, n=8) group. BE group performed the Nurida-Ball exercise(30 min/day, 3 days/week, 8 weeks) and isokinetic knee and trunk muscle function, spinal alignment, and dynamic balance capacity were measured. All of the measured variables calculated the mean and standard deviation and verified normality using the Shapiro-Wilk test. The independent t-test method and the Paired t-test method were then analyzed to identify differences between groups. This study found that isokinetic knee and trunk muscle function was significantly strengthened in the BE compared with CON group by increasing peak torque(PT) of right and left knee extension(60°/sec, p<0.01, respectively), average power(AP) of right and left knee extension(60°/sec, p<0.05, p<0.01, respectively), and PT of right knee flexion(180°/sec, p<0.05) and AP of right knee extension(180°/sec, p<0.05). In the change of isokinetic trunk muscle function, only PT of trunk extension(180°/sec) was increased in the BE compared with the CON group(p<0.05). In addition, Nurida-ball exercise can improve the spinal alignment by reducing the trunk inclination(p<0.05) in the BE compared with the CON group. Finally, dynamic balance capacity was also enhanced in the BE compared with the CON group by decreasing the score of overall balance index(OBI, p<0.01) and Antero-posterior balance index(p<0.05) in the Stage-6, and OBI(p<0.05) in the Stage-1. This result demonstrated that Nurida-ball exercise may improve spinal alignment, dynamic balance capacity, and isokinetic muscle function, which might be an effective way for the improvement of health-related fitness in middle-aged men.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).