• Title/Summary/Keyword: torque control.

Search Result 2,916, Processing Time 0.033 seconds

Maximum Torque Operating Strategy based on Stator Flux Analysis for Direct Torque and Flux Control of a SPMSM (고정자 자속의 해석을 통한 직접 토크 제어 SPMSM의 최대 토크 운전)

  • Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.463-469
    • /
    • 2014
  • This paper proposes a maximum torque operation strategy for the direct torque control of a surface-mounted permanent-magnet synchronous motor (SPMSM). The proposed method analyzes the available operation region of the stator flux of the SPMSM under voltage and current constraints. Based on this analysis, the optimal stator flux trajectory that yields the maximum torque is obtained across the entire operation region, including constant torque and constant power regions. The proposed strategy is also applicable in the flux-weakening region II operation of the SPMSM, which has no speed limit. The validity of the proposed method is verified through experiments conducted on an 800 W SPMSM drive system.

Direct Torque Control according to Flux and Torque of Hysterisis Band (자속 및 토오크 히스테리시스 밴드폭에 따른 직접토오크 제어)

  • Choi, Youn-Ok;Jeong, Sam-Yong;Kim, Dae-Gon;Kim, Pyung-Ho;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1206-1208
    • /
    • 2001
  • Direct torque control(DTC) of AC motor has the fast torque and flux dynamic responses even though it has very simple scheme to implement. DTC is also very simple in its implementation because it needs only two hysteresis comparators and switching vector table for both flux and torque control. The amplitude of hysteresis band greatly influences on the drive performance such as flux and torque ripple, switching frequency and current harmonics. Therefore, authors analysis flux and torque hysteresis bands is suggested considering switching frequency and harmonic distortion of currents.

  • PDF

Torque Ripple Reduction Method of SRM Drives Using Neural Network Technique (신경회로망기법을 이용한 SRM 드라이브의 토오크리플 저감방안)

  • Lee, Seong-Du;Jung, Tae-Uk;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.227-229
    • /
    • 1997
  • The torque of SRM is developed by phase currents and inductance variation. The inductance of torque generation region is nonlinearly varied according to phase current. By this nonlinear characteristics, torque ripple can be generated on the condition of constant current. Otherwise, phase current should be controlled instantaneously in accordance with inductance to reduce torque ripple. In this paper, the control system with neural network that can reduce torque ripple is suggested. In this control system, instantaneous inductance and optimal current waveform for smallest torque ripple is obtained by neural network. And this required optimal current waveform is regulated by voltage control.

  • PDF

Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller (적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Kang, Sung-Joon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

Ground Base Laser Torque Applied on LEO Satellites of Various Geometries

  • Khalifa, N.S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.484-490
    • /
    • 2012
  • This paper is devoted to investigate the feasibility of using a medium power ground-based laser to produce a torque on LEO satellites of various shapes. The laser intensity delivered to a satellite is calculated using a simple model of laser propagation in which a standard atmospheric condition and linear atmospheric interaction mechanism is assumed. The laser force is formulated using a geocentric equatorial system in which the Earth is an oblate spheroid. The torque is formulated for a cylindrical satellite, spherical satellites and for satellites of complex shape. The torque algorithm is implemented for some sun synchronous low Earth orbit cubesats. Based on satellites perigee height, the results demonstrate that laser torque affecting on a cubesat has a maximum value in the order of $10^{-9}$ which is comparable with that of solar radiation. However, it has a minimum value in the order of $10^{-10}$ which is comparable with that of gravity gradient. Moreover, the results clarify the dependency of the laser torque on the orbital eccentricity. As the orbit becomes more circular it will experience less torque. So, we can conclude that the ground based laser torque has a significant contribution on the low Earth orbit cubesats. It can be adjusted to obtain the required control torque and it can be used as an active attitude control system for cubesats.

An Improved Model Predictive Direct Torque Control for Induction Machine Drives

  • Song, Wenxiang;Le, Shengkang;Wu, Xiaoxin;Ruan, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.674-685
    • /
    • 2017
  • The conventional model predictive direct torque control (MPDTC) method uses all of the voltage vectors available from a two level voltage source inverter for the prediction of the stator flux and stator current, which leads to a heavy computational burden. This paper proposes an improved model predictive direct torque control method. The stator flux predictive controller is obtained from an analysis of the relationship between the stator flux and the torque, which can be used to calculate the desired voltage vector based on the stator flux and torque reference. Then this method only needs to evaluate three voltage vectors in the sector of the desired voltage vector. As a result, the computational burden of the conventional MPDTC is effectively reduced. The time delay introduced by the computational time causes the stator current to oscillate around its reference. It also increases the current and torque ripples. To address this problem, a delay compensation method is adopted in this paper. Furthermore, the switching frequency of the inverter is significantly reduced by introducing the constraint of the power semiconductor switching number to the cost function of the MPDTC. Both simulation and experimental results are presented to verify the validity and feasibility of the proposed method.

A Study of Using Optimal Hysteresis Band Amplitude Tuning for Direct Torque Control of Induction Motor (최적의 히스테리시스 대역폭을 이용한 유도전동기 직접토크제어에 관한 연구)

  • Jeong, B.H.;Cho, G.B.;Choi, C.J.;Baek, H.L.;Hwang, J.S.;Kim, Y.M.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.598-601
    • /
    • 2003
  • Most of all, DTC drive is very simple in its implementation because it needs only two hysteresis comparator and switching vector table for both flux and torque control. The switching strategy of a conventional direct torque control scheme which is based on hysteresis comparator results in a variable switching frequency which depends on the speed, flux, stator voltage and the hysteresis of the comparator. The amplitude of hysteresis band greatly influences on the drive performance such as flux and torque ripple and inverter switching frequency. In this paper the influence of the amplitudes of flux and torque hysteresis bands and sampling time of control program on the torque and flux ripples are investigated. Simulation results confirm the superiority of the DTC under the proposed method over the conventional DTC.

  • PDF

Design of Torque Servo for Impedance Control of Double Vane Rotary Hydraulic Actuator System (더블 베인 회전형 유압 구동시스템의 임피던스 제어를 위한 토크 서보 설계)

  • Kim, Seon-Min;Choi, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • In order to achieve a force controller with high performance, an accurate torque servo is required. However, the precise torque servo for a double vane rotary actuator system has not been developed till now, due to many nonlinear characteristics and system parameter variations. In this paper, the torque servo structure for the double vane rotary actuator system is proposed based on the torque model. Nonlinear equations are set up using dynamics of the double vane rotary hydraulic actuator system. Then, to derive the torque model, the nonlinear equations are linearized using a taylor series expansion. Both effectiveness and performance of the design of torque servo are verified by torque servo experiments and applying the suggested torque model to an impedance controller.