• Title/Summary/Keyword: torque control.

Search Result 2,916, Processing Time 0.026 seconds

Torque Control Strategy for High Performance SR Drive

  • Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.538-545
    • /
    • 2008
  • This paper attempts to summarize torque control strategy for high performance SR drive. There are primarily two strategies for torque control. One method is direct torque control, which uses the simple control scheme and hysteresis controller to reduce the torque ripple. Another method is indirect torque control, which uses the complicated algorithms or simple distribution function to distribute each phase torque and obtain current command. The current controller is used to control phase torque by a given current command. In order to compare these two strategies of torque control, five torque control methods are introduced. The advantages and disadvantages of each method are presented. At last, they are verified by some simulations and experimental results.

Dynamic Response of a 2.75MW Wind Turbine Applying Torque Control Method Based on Torque-Mode (토크모드 기반의 토크 제어 방법을 적용한 2.75MW 풍력터빈의 동적 응답)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2013
  • Torque control methods of wind turbine are mainly classified into two methods: torque-mode and speed-mode methods. The traditional torque-mode method, in which generator torque proportional to square of generator speed is determined, has been chosen in many wind turbines but its response is slower as they are larger in multi-MW size. Torque control methods based on both speed-mode and torque-mode can be used to make response of wind turbine faster. In this paper, two torque control methods based on the traditional torque-mode method are applied to a 2.75 MW wind turbine. It is shown through some simulation results for real turbulence wind speeds that torque control method based on torque-mode has the merit of reducing fluctuations of generated power than PI controller based on speed-mode.

A Improved Programmable-Dynamometer Control For Motor Drive Systems Testing (모터 구동시스템 시험을 위한 개선된 프로그램어블 다이나모메터 제어)

  • 김길동;박현준;조정민;전기영;오봉환;이훈구;한경희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.211-220
    • /
    • 2003
  • The control method of programmable dynamometer for overall test of machine is to load the reference torque which is computed from torque transducer into motor under test. But the torque information detected from torque transducer have a lot of noise when the load torque of meter is a small quantity or changing. Thus, torque transducer must have a low pass filter to detect a definite torque information. But The torque delay generated by filter with torque transducer occur a torque trouble for meter torque of programmable dynamometer. Therefore, this kind of system could not perform dynamic and nonlinear load. In this paper, the control method using the load torque observer without a measure for torque transducer is Proposed. The proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction meter. Therefore, the torque controller is not affected by a load torque disturbance. To verify a superiority of the proposed control algorithm, the analysis for a root locus of a conventional control method and the proposed one, and simulation and experiment is performed. Therefore we hope to be extended in industrial application.

Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor

  • Li, Zhenguo;Zhang, Songfa;Zhou, Shenghai;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1569-1576
    • /
    • 2014
  • This paper mainly proposes a direct torque control strategy to minimize torque ripple in brushless DC (BLDC) motor. BLDC motor has large current and torque ripple when one voltage vector applied in one cycle due to its low inductance. Hence, this paper proposed a hysteresis torque control with PWM mode to control the resultant torque. Moreover, when the direct torque control system is operating during the two-phase half-bridge $120^{\circ}$ conduction mode, large torque ripple in commutation area appears every 120 electrical degree. Based on analyzing the root of torque ripple in detail, lookup tables of switching devices states for new half-bridge modulation mode in the positive and negative reference torque put forwarded. Finally, simulations by MATLAB software and experiment results from DSP are presented to verify the feasibility and effectiveness of the proposed strategy operating in four-quadrant operation.

Load Control Device for VVVF Inverter Testing (인버터 시험을 위한 부하제어 장치)

  • Kim, Gil-Dong;Lee, Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.675-679
    • /
    • 2007
  • The control method of programmable dynamometer for overall test of machine is to load reference torque which is computed from torque transducer into motor under test. But the torque information detected from torque transducer have a lot of noise when the load torque of moter is a small quantity or changing. Thus, torque transducer must have a low pass filter to detect a definite torque information. But The torque delay generated by filter with torque transducer occur a torque trouble for moter torque of programmable dynamometer. Therefore, this kind of system could not perform dynamic and nonlinear load. In this paper, the control method using the load torque observer without a measure for torque transducer is proposed. The proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction moter. Therefore, the torque controller is not affected by a load torque disturbance.

  • PDF

Direct Torque Control of Switched Reluctance Motor for Torque Ripple Reduction (토크 리플 저감을 위한 스위치드 릴럭턴스 모터의 직접 토크 제어)

  • Kim, Youn-Hyun;Kim, Tae-Heoung;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.283-294
    • /
    • 2004
  • This paper introduces the new Direct Torque Control(DTC) method based on the estimated torque in Switched Reluctance Motor(SRM) and applies the proposed DTC to SRM for the instantaneous torque ripple reduction. The nonlinear characteristics of SRM is considered in the calculation of the estimated torque and the theory is described in this paper. Current control is one of the kernel elements of torque controller and the performance of the current control should be high for this work. But the conventional PI current control has a weak point in SRM application because of motional EMF. Consequently, this paper makes up for the weakness of PI controller through present of new current controller, that is termed the non-interference current control. The ability of proposed torque and current controller is verified through simulation and experiment.

Engine Control TCS using Throttle Angle Control and Estimated Load Torque (스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS)

  • 강상민;윤마루;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

Robust Force Control of Pneumatic Manipulator (공압 매니퓰레이터의 강인 힘제어)

  • Park, Jeong-Gyu;Noritsugu, Toshiro
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.540-552
    • /
    • 1996
  • In this paper, a compensation method of disturbance using a disturbance observer is proposed for a force control of a pneumatic robot manipulator. The generated torque by a pneumatic actuator can be estimated based on the pressure signals. The inner torque control system is constructed by feeding back the generated torque to improve the dynamic characteristics of the actuator. In order to reduce the influence of disturbances comprising friction torque, parameter variations of plant and environment and so on, the reaction torque control system is constructed with a disturbance observer which estimates the disturbances based on the reference input to the inner torque control system and the reaction torque sensed with a forced sensor. From some simulations and experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque and the parameter change of object in the force control of a pneumatic robot manupulator.

A Highly Efficient Dynamometer Control For Motor Drive Systems Testing (구동 시스템 시험을 위한 고성능 다이나모메터 제어)

  • Kim Gil-Dong;Shin Jeong-Ryol;Lee Han-Min;Lee Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1291-1293
    • /
    • 2004
  • The control method of programmable dynamometer for overall test of machine is to load the reference torque which is computed from torque transducer into motor under test. But the torque information detected from torque transducer have a lot of noise when the load torque of meter is a small quantity or changing. Thus, torque transducer must have a low pass filter to detect a definite torque information. But The torque delay generated by filter with torque transducer occur a torque trouble for moter torque of programmable dynamometer. Therefore, this kind of system could not perform dynamic and nonlinear load. In this paper, the control method using the load torque observer without a measure for torque transducer is proposed. The proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction meter. Therefore, the torque controller is not affected by a load torque disturbance.

  • PDF

Double DOF control of an electromechanical integrated toroidal drive

  • Xu, Lizhong;Liu, Xin
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.115-131
    • /
    • 2007
  • The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.