• Title/Summary/Keyword: tornado-structure interaction

Search Result 4, Processing Time 0.017 seconds

Large eddy simulation of the tornado-structure interaction to determine structural loadings

  • Panneer Selvam, R.;Millett, Paul C.
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.49-60
    • /
    • 2005
  • A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. The status of the tornado-structure interaction and various models of the tornado wind field found in literature are surveyed. Three dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of a tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by an semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine combined vortex model. The tornado is made to translate at a $0^{\circ}$ and $45^{\circ}$ angle, and the grid resolution is refined. Some flow visualizations are also reported to understand the flow behavior around the cube.

Computer modeling of tornado forces on buildings

  • Selvam, R. Panneer;Millett, Paul C.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.209-220
    • /
    • 2003
  • A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. In this work, the status of the tornado-structure interaction is surveyed by numerical simulation. Various models of the tornado wind field found in literature are surveyed. Three-dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by a semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine-Combined Vortex Model. Some flow visualizations are also reported to understand the flow behavior around the cube.

Influence of turbulence modeling on CFD simulation results of tornado-structure interaction

  • Honerkamp, Ryan;Li, Zhi;Isaac, Kakkattukuzhy M.;Yan, Guirong
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • Tornadic wind flow is inherently turbulent. A turbulent wind flow is characterized by fluctuation of the velocity in the flow field with time, and it is a dynamic process that consists of eddy formation, eddy transportation, and eddy dissipation due to viscosity. Properly modeling turbulence significantly increases the accuracy of numerical simulations. The lack of a clear and detailed comparison between turbulence models used in tornadic wind flows and their effects on tornado induced pressure demonstrates a significant research gap. To bridge this research gap, in this study, two representative turbulence modeling approaches are applied in simulating real-world tornadoes to investigate how the selection of turbulence models affects the simulated tornadic wind flow and the induced pressure on structural surface. To be specific, LES with Smagorinsky-Lilly Subgrid and k-ω are chosen to simulate the 3D full-scale tornado and the tornado-structure interaction with a building present in the computational domain. To investigate the influence of turbulence modeling, comparisons are made of velocity field and pressure field of the simulated wind field and of the pressure distribution on building surface between the cases with different turbulence modeling.

A comparison of the forces on dome and prism for straight and tornadic wind using CFD model

  • Yousef, Majdi A.A.;Selvam, Panneer R.;Prakash, Jai
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.369-382
    • /
    • 2018
  • Tornadoes are vertical swirling air formed because of the existence of layers of air with contrasting features of temperature, wind flow, moisture, and density. Tornadoes induce completely different wind forces than a straight-line (SL) wind. A suitably designed building for an SL wind may fail when exposed to a tornado-wind of the same wind speed. It is necessary to design buildings that are more resistant to tornadoes. In tornado-damaged areas, dome buildings seem to have less damage. As a dome structure is naturally wind resistant, domes have been used in back yards, as single family homes, as in-law quarters, man caves, game rooms, storm shelters, etc. However, little attention has been paid to the tornadic wind interactions with dome buildings. In this work, the tornado forces on a dome are computed using Computational Fluid Dynamics (CFD) for tornadic and SL wind. Then, the interaction of a tornado with a dome and a prism building are compared and analyzed. This work describes the results of the tornado wind effect on dome and prism buildings. The conclusions drawn from this study are illustrated in visualizations. The tornado force coefficients on a dome building are larger than SL wind forces, about 120% more in x- and y-directions and 280% more in z-direction. The tornado maximum pressure coefficients are also higher than SL wind by 150%. The tornado force coefficients on the prism are larger than the forces on the dome, about 100% more in x- and y-directions, and about 180% more in z-direction. The tornado maximum pressure coefficients on prism also are greater those on dome by 150% more. Hence, a dome building has less tornadic load than a prism because of its aerodynamic shape.