• Title/Summary/Keyword: tornado

Search Result 84, Processing Time 0.02 seconds

Sensitivity Analysis for Unit Module Development of Hybrid tube Structural System (복합 튜브 구조시스템의 단위 모듈 개발에 대한 민감도 해석)

  • Lee, Yeon-Jong;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.167-175
    • /
    • 2018
  • This research deals, The characteristics of mechanics and behavior of the tube structural systems, It has been investigated and considered conventional theory and case models, It has shown the suitability, The best location, And optimal shape of the unit module system, Considered variables materials of stiffness increase and decrease in hybrid tube structural systems this study carried out adapting analysis of statistical concepts. In a concrete way, This study exams the effect of reducing horizontal displacement and the shear lag phenomenon, Also, The purpose of this study is to utilize the basic data on the design and study of future high-rise hybrid structural system using this research. As a result, The framed- tube structural system does not effectively cope with horizontal behavior of high-rise buildings, The results of using varying material tested resistance factors and lateral loads in hybrid tube structural system, When each material is compared Bracing material is identified as a key factor in lateral behavior. In a ratio of material quantity framed-tube structural system, The level of sensitivity affecting the horizontal displacement is greater then the beam's column, In case of braced tube structural system, Braced appeared to be most sensitive in comparison of material quantity ratio in columns and beams.

Experimental and Analytical Studies on the Non-Linear behaviors of Pre-Stressed Steel H-Beams (프리스트레스트 H형강 거더의 비선형 거동에 대한 실험적 및 이론적 연구)

  • Kim, Moon-Young;Kim, Nak-Kyung;Oh, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.359-366
    • /
    • 2019
  • Experimental and analytical studies on the behavioral characteristics of a pre-stressed (PS) steel girder are conducted to investigate the effects of deviators on the non-linear inelastic properties of the PS system. In this regard, 4 test specimens consisting of a steel H-beam, a straight cable with eccentricity, anchorages, and deviators are built and failure tests are performed under two-point loading. In addition, in-plane elastic deformation theories for the PS system without a deviator, and with three deviators at regular intervals are analytically formulated and solved using a symbolic calculation technique. To verify the validity of the experimental and the proposed analytical theories, the results obtained using FEM models composed of beam elements, rigid beam elements, and truss cable elements, are compared to the experimental results and the analytical solutions. As a result, it is determined that externally installed un-bonded deviators inhibit flexural deformation of the deformed beam to such an extent that their elastic stiffness, and failure strength are significantly improved compared to those of the PS system without deviators.

Evaluation of Local Effect Prediction Formulas for RC Slabs Subjected to Impact Loading (충격하중이 작용하는 RC 슬래브의 국부손상 산정식에 대한 고찰)

  • Chung, Chul-Hun;Choi, Hyun;Lee, Jung Whee;Choi, Kang Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.543-560
    • /
    • 2010
  • Safety-related concrete structures in a nuclear power plant must be protected against the impact of flying objects, referred to in the profession as missiles. In practice, the structural verification is usually carried out by means of empirical formulas, which relate the velocity of the impinging missile to the wall thickness needed to prevent scabbing or perforation. The purpose of this study is to reevaluate the predictability of the local effect prediction formulas for the penetration and scabbing depths and perforation thickness. Therefore, available formulas for predicting the penetration depth, scabbing thickness, and perforation thickness of concrete structures impacted by solid missiles are summarized, reviewed, and compared. A series of impact analyses is performed to predict the local effects of the projectile at impact velocities varing from 95 to 215 m/s. The results obtained from the numerical simulations have been compared with tests that were carried out at Kojima to validate numerical modelling. The simulation results show reasonable agreement with the Kojima test results for the overall impact response of the RC slabs. From these results, it seems that the Degen equation give a very good estimate of perforation thickness against a tornado projectile for test data. Finally, the results obtained from the impact analysis have been compared with Degen formula to determine the perforation thickness of the RC slab.

Analyzing the Characteristics of Atmospheric Stability from Radiosonde Observations in the Southern Coastal Region of the Korean Peninsula during the Summer of 2019 (라디오존데 고층관측자료를 활용한 한반도 남해안 지역의 2019년도 여름철 대기 안정도 특성 분석)

  • Shin, Seungsook;Hwang, Sung-Eun;Lee, Young-Tae;Kim, Byung-Taek;Kim, Ki-Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.496-503
    • /
    • 2021
  • By analyzing the characteristics of atmospheric stability in the southern coastal region of the Korean Peninsula in the summer of 2019, a quantitative threshold of atmospheric instability indices was derived for predicting rainfall events in the Korean Peninsula. For this analysis, we used data from all of the 243 radiosonde intensive observations recorded at the Boseong Standard Weather Observatory (BSWO) in the summer of 2019. To analyze the atmospheric stability of rain events and mesoscale atmospheric phenomena, convective available potential energy (CAPE) and storm relative helicity (SRH) were calculated and compared. In particular, SRH analysis was divided into four levels based on the depth of the atmosphere (0-1, 0-3, 0-6, and 0-10 km). The rain events were categorized into three cases: that of no rain, that of 12 h before the rain, and that of rain. The results showed that SRH was more suitable than CAPE for the prediction of the rainfall events in Boseong during the summer of 2019, and that the rainfall events occurred when the 0-6 km SRH was 150 m2 s-2 or more, which is the same standard as that for a possible weak tornado. In addition, the results of the atmospheric stability analysis during the Changma, which is the rainy period in the Korean Peninsula during the summer and typhoon seasons, showed that the 0-6 km SRH was larger than the mean value of the 0-10 km SRH, whereas SRH generally increased as the depth of the atmosphere increased. Therefore, it can be said that the 0-6 km SRH was more effective in determining the rainfall events caused by typhoons in Boseong in the summer of 2019.