• 제목/요약/키워드: topside ionosphere

검색결과 19건 처리시간 0.021초

Formation CubeSat Constellation, SNIPE mission

  • Lee, Jaejin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.58.4-59
    • /
    • 2021
  • This presentation introduces Korea's SNIPE (Small scale magNespheric and Ionospheric Plasma Experiment) mission, formation flying CubeSat constellation. Observing particles and waves on a single satellite suffers from inherent space-time ambiguity. To observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere, four 6U CubeSats (~ 10 kg) will be launched into a polar orbit of the altitude of ~500 km in 2021. The distances of each satellite will be controlled from 10 km to more than 100 km by formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, solid-state telescope, magnetometer, and Langmuir probe. All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium modules provide an opportunity to upload changes in operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather.

  • PDF

Comparison between Ionospheric and plasmaspheric TECs measured from JASON satellite: plasmaspheric flux

  • Lee, Han-Byul;Jee, Geon-Hwa;Kim, Yong-Ha;Chung, Jong-Kyun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.27.3-27.3
    • /
    • 2011
  • The plasmasphere is filled with the ions and electron transported mostly from the mid-latitude ionosphere. In the topside ionosphere where the $O^+$ ions are still major ions, the $O^+$ ions are in chemical equilibrium with the $H^+$ ions and exchange their charges with each other's parent atoms with similar rates in both reactions. During the day, the newly produced $H^+$ ions flow upward to fill the plasmasphere while they flow downward and contribute to the maintenance of the ionospheric density at night under the geomagnetically quiet condition. The ionosphere and plasmasphere are coupled by these plasma fluxes and therefore strongly affect each other. In order to study these coupling we utilized the plasma density measurements from JASON satellite. This satellite measures vertical total electron content (TEC) from the ground to the satellite orbit (about 1336 km) and slant TEC from the satellite orbit to much higher GPS satellites by using the on-board dual-frequency altimeter and GPS receiver, respectively. The former measurement can represent the ionospheric TEC while the latter can represent the plasmaspheric TEC in the equatorial region. We compared these data with different seasons, solar activities and local times, and the results will be presented.

  • PDF

다목적 실용위성 1호로 측정한 저위도 상부 이온층의 전자 온도와 전자 밀도의 경도 및 계절별 변화 (LONGITUDINAL AND SEASONAL VARIATIONS OF THE ELECTRON TEMPERATURE AND DENSITY IN THE LOW_LATITUDE TOPSIDE IONOSPHERE OBSERVED BY KOMPSAT-1)

  • 김희준;박선미;이재진;이은상;민경욱;한원용;남욱원;진호
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권2호
    • /
    • pp.123-132
    • /
    • 2002
  • 다목적 실용위성 1호는 고도 685km, $98^{\circ}$의 궤도 경사각를 가지며, 탑재된 이온층 측정 센서(Ionospheric Measurement Sensor)로 전자 온도와 전자 밀도를 측정하였다. 이 관측 자료로부터 22:50LT인 밤 시간에 $+60^{\circ}~-60^{\circ}$의 저위도 지역에서 자기적으로 안정한 상태(Kp <4)의 계절별 전자 밀도와 전자 온도의 분포를 구하였다. 관측 결과, 전자 온도와 전자 밀도의 분포는 계절과 경도에 따라 변화를 나타냈다. 대체로 전자 밀도는 자기 적도 부근에서 높아지고, 전자 온도는 낮아지는 경향을 보였다. 봄, 가을에는 전자 밀도와 온도 모두 자기 적도를 중심으로 대칭적으로 분포하였다. 그러나 여름에는 전체적으로 북반구 쪽으로 이동하여 전자 밀도의 극대점과 전자 온도의 극소점이 자기 적도 북쪽에 위치하였고, 겨울에는 이와 반대의 변화를 나타냈다. 또한, 각 계절에서 경도에 따라서도 전자 온도와 밀도 분포의 차이를 보였다. 이러한 차이가 생기는 원인은 경도와 계절에 따라 달라지는 F층의 중성 바람이 이온층 플라즈마에 영향을 주는 것에 의해 설명될 수 있다. 이 관측에서 얻은 전자온도와 밀도의 분포는 IRI95모델을 이용해 구한 분포와 차이를 보였다.

Small scale magNetospheric and Ionospheric Plasma Experiments; SNIPE mission

  • Hwang, Junga;Lee, Jaejin;Shon, Jongdae;Park, Jaeheung;Kwak, Young-Sil;Nam, Uk-Won;Park, Won-Kee
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.40.3-41
    • /
    • 2017
  • Korea Astronomy and Space Science Institute The observation of particles and waves using a single satellite inherently suffers from space-time ambiguity. Recently, such ambiguity has often been resolved by multi-satellite observations; however, the inter-satellite distances were generally larger than 100 km. Hence, the ambiguity could be resolved only for large-scale (> 100 km) structures while numerous microscale phenomena have been observed at low altitude satellite orbits. In order to resolve those spatial and temporal variations of the microscale plasma structures on the topside ionosphere, SNIPE mission consisted of four (TBD) nanosatellites (~10 kg) will be launched into a polar orbit at an altitude of 700 km (TBD). Two pairs of satellites will be deployed on orbit and the distances between each satellite will be from 10 to 100 km controlled by a formation flying algorithm. The SNIPE mission is equipped with scientific payloads which can measure the following geophysical parameters: density/temperature of cold ionospheric electrons, energetic (~100 keV) electron flux, and magnetic field vectors. All the payloads will have high temporal resolution (~ 16 Hz (TBD)). This mission is planned to launch in 2020. The SNIPE mission aims to elucidate microscale (100 m-10 km) structures in the topside ionosphere (below altitude of 1,000 km), especially the fine-scale morphology of high-energy electron precipitation, cold plasma density/temperature, field-aligned currents, and electromagnetic waves. Hence, the mission will observe microscale structures of the following phenomena in geospace: high-latitude irregularities, such as polar-cap patches; field-aligned currents in the auroral oval; electro-magnetic ion cyclotron (EMIC) waves; hundreds keV electrons' precipitations, such as electron microbursts; subauroral plasma density troughs; and low-latitude plasma irregularities, such as ionospheric blobs and bubbles. We have developed a 6U nanosatellite bus system as the basic platform for the SNIPE mission. Three basic plasma instruments shall be installed on all of each spacecraft, Particle Detector (PD), Langmuir Probe (LP), and Scientific MAGnetometer (SMAG). In addition we now discuss with NASA and JAXA to collaborate with the other payload opportunities into SNIPE mission.

  • PDF

Variation of Floating Potential in the Topside Ionosphere Observed by STSAT-1

  • Lee, Junhyun;Lee, Ensang;Lee, Jaejin;Kim, Khan-Hyuk;Seon, Jongho;Lee, Dong-Hun;Jin, Ho;Kim, Eung-Hyun;Jeon, Hyun-Jin;Lim, Seong-Bin;Kim, Taeyoun;Jang, Jaewoong;Jang, Kyung-Duk;Ryu, Kwangsun
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.311-315
    • /
    • 2014
  • In this study, we investigated the effect of space plasmas on the floating potential variation of a low-altitude, polar-orbiting satellite using the Langmuir Probe (LP) measurement onboard the STSAT-1 spacecraft. We focused on small potential drops, for which the estimation of plasma density and temperature from LP is available. The floating potential varied according to the variations of plasma density and temperature, similar to the previously reported observations. Most of the potential drops occurred around the nightside auroral region. However, unlike the previous studies where large potential drops were observed with the precipitation of auroral electrons, the potential drops occurred before or after the precipitation of auroral electrons. Statistical analysis shows that the potential drops have good correlation with the temperature increase of cold electrons, which suggests the small potential drops be mainly controlled by the cold ionospheric plasmas.

KOMPSAT-1 SPS IMS에 관측된 적도 이온층 밀도 불균일 현상에 대한 연구 (STUDY ON EQUATORIAL, BUBBLES DETECTED BY SPS IMS ONBOARD THE KOMPSAT-I)

  • 박재흥;이재진;이은상;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권2호
    • /
    • pp.133-140
    • /
    • 2002
  • 다목적 실용 위성 1호는 1999년에 발사되어 운용되고 있으며 , 과학 탑재체로 우주과학센서(Space Physics Sensor)를 탑재하고 있다. 이중 SPS IMS는 2000년 6월부터 2001년 8월에 이르는 태양 활동 극대기 동안 지구 이온층에 관한 정보를 지상으로 전송하였다. 다목적 실용위성 1호가 적도지 역을 통과할 때 전자 밀도가 급격 히 감소하는 플라즈마 밀도 불균일 현상(equatorial bubble)이 자주 관측되었다. SPS IMS가 운용된 기간 동안의 데이터를 통계적으로 분석 한 결과, equatorial bubble 현상은 지구 자기장의 크기가 약한 대서양 지역에서 자주 일어났고, 또한 Kp 간이 낮을 때에 더욱 빈번하게 발생하였다. 이는 기존의 DMSP위성을 통한 관측 결과 및 페루 지역의 라디오 관측 결과 등과 상당한 수준의 일치를 보이고 있다. 밀도 불균일 지역 내의 전자 온도 변화는 전자 밀도 변화와 다양한 상관 관계를 나타낸다.

KOMPSAT-I으로 관측한 저위도 이온층 밀도 급상승 현상에 대한 연구 (PRELIMINARY STUDY ON THE ABRUPT DENSITY ENHANCEMENT IN LOW LATITUDE REGION DETECTED BY KOMPSAT-I)

  • 박재홍;이재진;이은상;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권1호
    • /
    • pp.53-62
    • /
    • 2003
  • SPS(Space Physics Sensor)는 1999년 발사된 다목적 실용 위성 1호(KOMPSAT-I)에 실린 관측 장비로서, 태양 활동 극대기인 2000년 6월부터 2001년 8월까지 지구 이온층에 관한 자료를 지구로 전송하였다. 이 자료 중 때때로 저위도 지역에서 급격한 플라즈마 밀도 증가 현상을 볼 수 있었다. 이러한 현상의 통계적 분포를 살펴본 결과, 지구 자기장이 약한 대서양 지역과 하와이 지역에서 발생 확률이 가장 높으며, 지자기 활동성 지수인 Dst나 태양 활동성을 나타내는 F10.7지수와는 특별한 상관관계가 없다는 사실을 확인할 수 있었다. 밀도 증가 지역 내의 전자 온도 변화는 개별 사건마다 증가, 유지, 또는 감소를 보이고 있으나, 온도가 급격히 감소하는 경우가 지배적이었다.

우주날씨 관측을 위한 큐브위성 도요샛 임무 (SNIPE Mission for Space Weather Research)

  • 이재진;손종대;박재흥;양태용;송호섭;황정아;곽영실;박원기
    • 우주기술과 응용
    • /
    • 제2권2호
    • /
    • pp.104-120
    • /
    • 2022
  • 도요샛(Small Scale magNetospheric and Ionospheric Plasma Experiment, SNIPE)의 과학임무는 전리권 상층부 소규모 플라즈마 구조의 공간적 시간적 변화를 관찰하는 것이다. 이를 위해 4개의 6U 큐브위성(10 kg)이 고도 약 500 km 극궤도로 발사될 예정이며, 상호 위성 간 거리는 편대 비행 알고리즘에 의해 수 10 km에서 수 1,000 km 이상으로 제어된다. 운영 초기에는 4기의 위성이 같은 궤도 평면에 위치하는 종대비행을 하다가 경도상에서 나란히 배치되는 횡대비행으로 전환하여 4기의 서로 다른 지점에서 공간적인 변화를 관측하게 된다. 도요샛에는 입자 검출기, 랑뮈어 탐침, 자력계로 구성된 우주날씨 관측 장비가 각 위성에 탑재된다. 모든 관측기는 10 Hz 이상의 높은 시간 분해능을 가지며 큐브위성에 최적화 설계되었다. 이 외에도 이리디듐 통신 모듈은 지자기 폭풍이 발생할 때 작동 모드를 변경하기 위한 명령을 업로드할 수 있는 기회를 제공한다. 도요샛은 극 지역 플라즈마 밀도 급상승, 필드 정렬 전류, 고에너지 전자의 국소 영역 침투, 적도 및 중위도 플라즈마 거품의 발생 및 시공간적 진화에 대한 관찰을 수행할 예정이며, 이를 통해 태양풍이 우주날씨에 어떠한 영향을 미치는지 탐구하게 된다. 도요샛은 2023년 상반기 러시아 소유즈-2에 의해 카자흐스탄 바이코누르에서 발사될 예정이다.

Variation of the Hemispheric Asymmetry of the Equatorial Ionization Anomaly with Solar Cycle

  • Kwak, Young-Sil;Kil, Hyosub;Lee, Woo Kyoung;Yang, Tae-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.159-168
    • /
    • 2019
  • In solstices during the solar minimum, the hemispheric difference of the equatorial ionization anomaly (EIA) intensity (hereafter hemispheric asymmetry) is understood as being opposite in the morning and afternoon. This phenomenon is explained by the temporal variation of the combined effects of the fountain process and interhemispheric wind. However, the mechanism applied to the observations during the solar minimum has not yet been validated with observations made during other periods of the solar cycle. We investigate the variability of the hemispheric asymmetry with local time (LT), altitude, season, and solar cycle using the electron density taken by the CHAllenging Minisatellite Payload satellite and the global total electron content (TEC) maps acquired during 2001-2008. The electron density profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites during 2007-2008 are also used to investigate the variation of the hemispheric asymmetry with altitude during the solar minimum. During the solar minimum, the location of a stronger EIA moves from the winter hemisphere to the summer hemisphere around 1200-1400 LT. The reversal of the hemispheric asymmetry is more clearly visible in the F-peak density than in TEC or in topside plasma density. During the solar maximum, the EIA in the winter hemisphere is stronger than that in the summer hemisphere in both the morning and afternoon. When the location of a stronger EIA in the afternoon is viewed as a function of the year, the transition from the winter hemisphere to the summer hemisphere occurs near 2004 (yearly average F10.7 index = 106). We discuss the mechanisms that cause the variation of the hemispheric asymmetry with LT and solar cycle.