• Title/Summary/Keyword: topology optimum design

Search Result 74, Processing Time 0.02 seconds

Optimal Design of Electric Vehicle Cross Beam for Adaptive Design of Homogenized Structure (균질화된 구조의 적응설계를 위한 전동차 크로스 빔의 최적설계)

  • 백석흠;이경영;조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.85-93
    • /
    • 2004
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. This need to use adaptive design in initial design stage to gain economy through interchangeability between many kinds of components. This study performs the topology optimization by the concept of homogenization based on optimality criteria method which is efficient for the problem with a number of boundary condition and design variable. Therefore this provides the method to determine the optimum position and the shape of circular hole in the cross beam and then can achieve the weight minimization of electric vehicle body.

A Study on Development for Wind Turbine Rotor Hub using Design of Shape Optimization (형상 최적설계법을 이용한 풍력발전기 로터 허브 개발에 관한 연구)

  • Kim, Young-Il;Moon, Sung-Young;Lee, Ji-Hyun;Lee, Yun-Sung;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • Wind turbine frame will be required to be longer, lighter, more reliable and more consistent. Therefore it is necessary to lose weight of the wind turbine hub. Light-weight Design of a wind turbine is required to be at least 20 years. Therefore, this paper investigates the development for wind turbine rotor hub using design of topology optimization. The model is a pitch regulated wind turbine with three rotor blades where the main frame is made of nodular iron. For optimization, calculating stresses based on displacements and based on these data to carry out a verification of static and fatigue strength carried out. For this verification, two kind of analysis is used. One is static analysis and the other is fatigue analysis. Then the rotor hub of wind turbine frame is optimized using topology method.

Optimum cost design of frames using genetic algorithms

  • Chen, Chulin;Yousif, Salim Taib;Najem, Rabi' Muyad;Abavisani, Ali;Pham, Binh Thai;Wakil, Karzan;Mohamad, Edy Tonnizam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.293-304
    • /
    • 2019
  • The optimum cost of a reinforced concrete plane and space frames have been found by using the Genetic Algorithm (GA) method. The design procedure is subjected to many constraints controlling the designed sections (beams and columns) based on the standard specifications of the American Concrete Institute ACI Code 2011. The design variables have contained the dimensions of designed sections, reinforced steel and topology through the section. It is obtained from a predetermined database containing all the single reinforced design sections for beam and columns subjected to axial load, uniaxial or biaxial moments. The designed optimum beam sections by using GAs have been unified through MATLAB to satisfy axial, flexural, shear and torsion requirements based on the designed code. The frames' functional cost has contained the cost of concrete and reinforcement of steel in addition to the cost of the frames' formwork. The results have found that limiting the dimensions of the frame's beams with the frame's columns have increased the optimum cost of the structure by 2%, declining the re-analysis of the optimum designed structures through GA.

Topology Optimization of Offshore Wind-Power Turbine Substructure Using 3D Solid-Element Model (3 차원 고체요소모델을 활용한 해상풍력터빈 하부구조의 위상최적화)

  • Kim, Won Cheol;Chung, Tae Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.309-314
    • /
    • 2014
  • The structural layout of mechanical and civil structures is commonly obtained using conventional methods. For example, the shape of structures such as electric transmission towers and offshore substructures can be generated systematically. However, with rapid advancements in computer graphic technology, advanced structural analyses and optimum design technologies have been implemented. In this study, the structural shape of a jacket substructure for an offshore wind turbine is investigated using a topology optimization technique. The structure is subjected to multiple loads that are intended to simulate the loading conditions during actual operation. The optimization objective function is defined as one that ensures compliance of the structure under the given boundary conditions. Optimization is carried out with constraints on the natural frequency in addition to the volume constraint. The result of a first step model provides quick insights into the optimum layout for the second step structure. Subsequently, a 3D model in the form of the frustum of a quadrilateral pyramid is developed through topology optimization.

Topology Optimization of General Plate Structures by Using Unsymmetric Layered Artificial Material Model (비대칭 층을 가지는 인공재료모델을 이용한 일반 평판구조물의 위상최적화)

  • Park, Gyeong-Im;Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.67-74
    • /
    • 2007
  • The unsymmetrically layered artificial material model is consistently introduced to find the optimum topologies of the plate structures. Reissner-Mindlin (RM) plate theory is adopted to formulate the present 9-node plate element considering the first-order shear deformation of the plates. In the topology optimization process, the strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. In addition, the resizing algorithm based on the optimality criteria is used to update the hole size introduced in the proposed artificial material model. Several numerical examples are rallied out to investigate the performance of the proposed technique. From numerical results, the proposed topology optimization techniques are found to be very effective to produce the optimum topology of plate structures. In particular, the proposed unsymmetric stiffening layer model make it possible to produce more realistic stiffener design of the plate structures.

  • PDF

Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.313-331
    • /
    • 2017
  • In this study, teaching-learning based optimization (TLBO) is improved by incorporating model of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, and kinematic stability constraints while design variables are discrete and continuous. Analyses of unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler's criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions.

Colliding bodies optimization for size and topology optimization of truss structures

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.847-865
    • /
    • 2015
  • This paper presents the application of a recently developed meta-heuristic algorithm, called Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is based on the one-dimensional collisions between two bodies, where each agent solution is considered as a body. The performance of the proposed algorithm is investigated through four benchmark trusses for minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO with those of other available algorithms indicates that the proposed technique is capable of locating promising solutions using lesser or identical computational effort, with no need for internal parameter tuning.

Topology Optimization of Plane Structures under Free Vibration with Isogeometric Analysis (등기하해석법을 이용한 자유진동 평면구조물의 위상최적화)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2018
  • Isogeometric concept is introduced to find out the optimum layout of plane structure under free vibration. Eigenvalue problem is formulated and numerically solved in order to obtain natural frequencies and mode shapes of plane structures. For the exact geometric expression of the structure, the Non-Uniform Rational B-spline Surface (NURBS) basis functions is employed and it is also used to define the material density functions. A node-wise design variables is adopted to deal with the updating of material density in topology optimization (TO). The definition of modal strain energy is employed to achieve the maximization of fundamental frequency through its minimization. The verification of the proposed TO technique is performed by a series of benchmark test for plane structures.

Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA

  • Nouri, Farshid;Ashtari, Payam
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.489-508
    • /
    • 2015
  • In this paper, a novel methodology is proposed to obtain optimum location of outriggers. The method utilizes genetic algorithm (GA) for shape and size optimization of outrigger-braced tall structures. In spite of previous studies (simplified methods), current study is based on exact modeling of the structure in a computer program developed on Matlab in conjunction with OpenSees. In addition to that, exact wind loading distribution is calculated in accordance with ASCE 7-10. This is novel since in previous studies wind loading distributions were assumed to be uniform or triangular. Also, a new penalty coefficient is proposed which is suitable for optimization of tall buildings. Newly proposed penalty coefficient improves the performance of GA and results in a faster convergence. Optimum location and number of outriggers is investigated. Also, contribution of factors like central core and outrigger rigidity is assessed by analyzing several design examples. According to the results of analysis, exact wind load distribution and modeling of all structural elements, yields optimum designs which are in contrast of simplified methods results. For taller frames significant increase of wind pressure changes the optimum location of outriggers obtained by simplified methods. Ratio of optimum location to the height of the structure for minimizing weight and satisfying serviceability constraints is not a fixed value. Ratio highly depends on height of the structure, core and outriggers stiffness and lateral wind loading distribution.