• Title/Summary/Keyword: topologically ${\Omega}$-stable

Search Result 2, Processing Time 0.009 seconds

WEAK INVERSE SHADOWING AND Ω-STABILITY

  • Zhang, Yong;Choi, Taeyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.137-145
    • /
    • 2004
  • We give characterization of ${\Omega}$-stable diffeomorphisms via the notions of weak inverse shadowing. More precisely, it is proved that the $C^1$ interior of the set of diffeomorphisms with the weak inverse shadowing property with respect to the class $\mathcal{T}_h$ coincides with the set of ${\Omega}$-stable diffeomorphisms.

  • PDF

DYNAMICS OF RANDOM DYNAMICAL SYSTEMS

  • Enkhbayar Azjargal;Zorigt Choinkhor;Nyamdavaa Tsegmid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1131-1139
    • /
    • 2023
  • In this paper, we introduce the concept of ω-expansive of random map on compact metric spaces 𝓟. Also we introduce the definitions of positively, negatively shadowing property and shadowing property for two-sided RDS. Then we show that if 𝜑 is ω-expansive and has the shadowing property for ω, then 𝜑 is topologically stable for ω.