• 제목/요약/키워드: topographic position index

Search Result 19, Processing Time 0.022 seconds

Study on Application of Topographic Position Index for Prediction of the Landslide Occurrence (산사태 발생지 예측을 위한 Topographic Position Index의 적용성 연구)

  • Woo, Choong-Shik;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • The objective of the study is 10 know the relation of landslide occurrence with using TPI (Topographic Position Index) in the Pyungchang County. Total 659 landslide scars were detected from aerial photographs. To analyze TPI, 100m SN (Small-Neighborhood) TPI map, 500m LN (Large-Neighborhood) TPI map, and slope map were generated from the DEM (Digital Elevation Model) data which are made from 1 : 5,000 digital topographic map. 10 classes clustered by regular condition after overlapping each TPI maps and slope map. Through this process, we could make landform classification map. Because it is only to classify landform, 7 classes were finally regrouped by the slope angle information of landslide occurrence detected from aerial photography analysis. The accuracy of reclassified map is about 46%.

A Prediction of Forest Wetlands Distribution using Topographic Position Index (Topographic Position Index를 활용한 산지습지 분포예측)

  • Park, Kyung-Hun;Kim, Kyung-Tae;Gwak, Haeng-Goo;Lee, Woo-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.194-204
    • /
    • 2007
  • The purpose of this paper was to propose a Topographic Position Index(TPI) method for predicting forest wetlands, and also to test the suitability of the predicted forest wetlands by comparing with the existing wetlands in Ulaju-gun and Gyengsangnam-do. A prediction of the spatial distribution of forest wetlands was accomplished by TPI grids from Digital Elevation Model(DEM), and the classification results of slope position and landform categories in study area using the TPI values. According to the results of predicting forest wetlands distribution by TPI method, the predicted area in case of less than $5^{\circ}$ flat slope criteria occupied 0.1%($1.38km^2$) of the total area, and 3.5%($37.1km^2$) of total area in below $10^{\circ}$ slope criteria. According to the results of the suitability analysis by comparing the predicted area with the existing forest wetlands, the suitability value (0.066) of the predicted area with less than $10^{\circ}$ flat slope criteria was the highest, but the predicted area in case of less than $20^{\circ}$ had the lowest value(0.019).

  • PDF

Landslide Susceptibility Assessment Using TPI-Slope Combination (TPI와 경사도 조합을 이용한 산사태 위험도 평가)

  • Lee, Han Na;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.507-514
    • /
    • 2018
  • TSI (TPI-Slope Index) which is the combination of TPI (Topographic Position Index) and slope was newly proposed for landslide and applied to a landslide susceptibility model. To do this, we first compared the TPIs with various scale factors and found that TPI350 was the best fit for the study area. TPI350 was combined with slope to create TSI. TSI was evaluated using logistic regression. The evaluation showed that TSI can be used as a landslide factor. Then a logistic regression model was developed to assess the landslide susceptibility by adding other topographic factors, geological factors, and forestial factors. For this, landslide-related factors that can be extracted from DEM (Digital Elevation Model), soil map, and forest type map were collected. We checked these factors and excluded those that were highly correlated with other factors or not significant. After these processes, 8 factors of TSI, elevation, slope length, slope aspect, effective soil depth, tree age, tree density, and tree type were selected to be entered into the regression analysis as independent variables. Three models through three variable selection methods of forward selection, backward elimination, and enter method were built and evaluated. Selected variables in the three models were slightly different, but in common, effective soil depth, tree density, and TSI was most significant.

DEVELOPING PREDICTIVE METHOD FOR FOREST SITE DISTRIBUTION USING SATELLITE IMAGERY AND TPI (TOPOGRAPHIC POSITION INDEX)

  • Kim, Dong-Young;Jo, Myung-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.281-284
    • /
    • 2008
  • Due to the remarkable development of the GIS and spatial information technology, the information on the national land and scientific management are disseminated. According to the result of research for an efficient analysis of forest site, it presents distinguishing of satellite image and methodology of TPI (Topographic Position Index). The prediction of forest site distribution through this research, specified Gyeongju-si area, gives an effect to distinguishing honor system through Quickbird image with the resolution 0.6m. Furthermore it was carried out through TPI grid that is abstracted by DEM, slope of study area and type of topography, as well as it put its operation on analysis and verification of relativity between the result of prediction on forest site distribution and the field survey report. It distinguishes distribution of country rock that importantly effects to producing of soil, using 1: 5000 forest maps and grasping distribution type of soil using satellite image and TPI, it is supposed to provide a foundation of the result on prediction of forest site. With the GIS techniques of analysis, inclination of discussion, altitude, etc, and using high resolution satellite image and TPI, it is considered to be capable to provide more exact basis information of forest resources, management of forest management both in rational and efficient.

  • PDF

Analysis of Relative Elevation in Korea Using Topographic Position Index(TPI) Model (지형위치지수(TPI)모형을 이용한 상대표고 분석)

  • Lee, Chong-Soo;Lee, Woo-Kyun;Jeon, Seong-Woo;Kang, Byung-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.292-295
    • /
    • 2007
  • 개발계획이나 환경계획 수립시에 절대적인 해발고도를 기준으로 지형적 특성을 분석한다면 절대표고가 낮은 지역은 대부분 개발가능지로 구분된다. 따라서 지역적 특성을 반영하는 상대표고를 적용하여야 하나 산의 경계구획,능선설정 등의 어려움으로 아직 전국단위의 구체적인 연구는 미흡한 실정이다. 이에 본 연구에서는 최근 Weiss 가 제안한 지형위치지수 ( Topogr aph i c Position Index, TPI) 를 적용하여 전국 단위의 상대표고 분석 가능성을 검토하였다. TPI 모델 도출 결과와 기존 환경부 국토환경성 평가에 사용한 Gaia EZeye 모델 결과를 중첩 비교한 결과 정확도가 높은 것으로 나타났다.

  • PDF

Regional Topographic Characteristics of Sand Ridge in Korean Coastal Waters on the Analysis of Multibeam Echo Sounder Data (다중빔음향측심 자료분석에 의한 한국 연안 사퇴의 해역별 지형 특성)

  • BAEK, SEUNG-GYUN;SEO, YOUNG-KYO;JUNG, JA-HUN;LEE, YOUNG-YUN;LEE, EUN-IL;BYUN, DO-SEONG;LEE, HWA-YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • In this study, distribution of submarine sand ridges in the coastal waters of Korea was surveyed using multibeam echo sounder data, and the topographic characteristics of each region were identified. For this purpose, the DEM (Digital Elevation Model) data was generated using depth data obtained from the Yellow Sea and the South Sea by Korea Hydrographic and Oceanographic Agency, and then applied the TPI (Topographic Position Index) technique to precisely extract the boundary of the sand ridges. As a result, a total of 200 sand ridges distributed in the coastal waters were identified, and the characteristics of each region of the sedimentary sediments were analyzed by performing statistical analysis on the scale (width, length, perimeter, area, height) and shape (width/length ratio, height/width ratio, linear·branch type, exposure·non-exposure type). The results of this study are expected to be used not only for coastal navigational safety, but also for marine naming support, marine aggregate resource identification, and fisheries resource management.

Disaster risk predicted by the Topographic Position and Landforms Analysis of Mountainous Watersheds (산지유역의 지형위치 및 지형분석을 통한 재해 위험도 예측)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Extreme climate phenomena are occurring around the world caused by global climate change. The heavy rains exceeds the previous record of highest rainfall. In particular, as flash floods generate heavy rainfall on the mountains over a relatively a short period of time, the likelihood of landslides increases. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. Therefore, in this study, is to predict the risk of disasters by applying topographic classification techniques and landslide risk prediction techniques to mountain watersheds. Classify the hazardous area by calculating the topographic position index (TPI) as a topographic classification technique. The SINMAP method, one of the earth rock predictors, was used to predict possible areas of a landslide. Using the SINMAP method, we predicted the area where the mountainous disaster can occur. As a result, the topographic classification technique classified more than 63% of the total watershed into open slope and upper slope. In the SINMAP analysis, about 58% of the total watershed was analyzed as a hazard area. Due to recent developments, measures to reduce mountain disasters are urgently needed. Stability measures should be established for hazard zone.

Analysis of the Relationship between Landform and Forest Fire Severity (지형과 산불피해도와의 관계 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Jang, Kwang-Min;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Topography factors, as homeostasis variables at forest fire, affect the formation of fuel load patterns, atmospheric phenomena and forest fire behavior. Examination of the correlation between landforms and fire severity is important to decision making for fire hazard analysis and fighting strategies. In this study, fire severity was analyzed using Normalized Burn Ratio(NBR) derived from pre- and post-fire Landsat TM/+ETM images and landform were classified based on Topographic Position Index(TPI) in Samcheok(2000), Cheongyang(2002), and Yangyang(2005) forest fire regions. F-tests and Duncan's multi-range test between landform and fire severity showed that fire severities of headwater, high ridges, and upper slopes is higher than ones of local ridges, midslope ridges, and plains. Fire severity were more sensitive in coniferous forest than broadleaf forests.

  • PDF

Landform Classification using Geomorphons (지형패턴(Geomorphons)을 이용한 새로운 지형분류방법)

  • KIM, Dong-Eun;SEONG, Yeong Bae;SOHN, Hak Gi;CHOI, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.139-155
    • /
    • 2012
  • Most of previous landform classification methods using DEM compares the values between the center of the cell and the surrounding cells, which in turn, greatly depends on analysis scale. To overcome the problem of scale-dependency, a new classification scheme is developed, which is called "Geomorphons". Unlike the traditional approaches using DEM, Geomorphons is the way which compares the level with other cells against the criteria cell. As a pilot study, we classify the landforms of Pyeongchang-Gun in Korea. Then, we compare the result with the other methods such as Topographic Position Index. Through the systematic analysis, we obtain the following findings. First, Geomorphons can reduce the time for the classification of landforms because of using unsupervised classification. Second, Geomorphons is little dependent on change in the scale, which can provide a pilot tool for reconnaissance study for covering large area.

Analysis of Topographical Factors in Woomyun Mountain Debris Flow Using GIS (GIS를 이용한 우면산 토석류 지형인자 분석)

  • Lee, Hanna;Kim, Gihong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.809-815
    • /
    • 2020
  • A number of investigations and studies have been conducted in various fields regarding the sediment disasters of Mt. Woomyeon that occurred in July 2011. We collected and compared the topographic information of the general points where debris flows did not occur and the collapse points where the debris flow occurred in order to find out the characteristics of the collapse points in Woomyeon mountain. The collected topographic information is altitude, curvature, slope, aspect and TPI(topographic position index). As a result of comparison, there were relatively many collapse points at an altitude of 210m to 250m, and at a slope of 30° to 40°. In addition, the risk of collapse was low in a cell where the curvature was close to 0, and the risk was higher in concave terrain than in convex terrain. In the case of TPI, there was no statistical difference between the general points and the collapse points when the analysis radius was larger than 200m, and there was a correlation with the curvature when the analysis radius was smaller than 50m. In the case of debris flows that are affected by artificial structures or facilities, there is a possibility of disturbing the topographic analysis results. Therefore, if a research on debris flow is conducted on a mountain area that is heavily exposed to human activities, such as Woomyeon mountain, diversified factors must be considered to account for this impact.