• Title/Summary/Keyword: topographic map

Search Result 473, Processing Time 0.025 seconds

Landuse oriented Water Balance Analysis Method by the Hydrological Model BAGLUVA based on Soil and Vegetation (토양-식생기반의 수문모델 BAGLUVA를 적용한 토지이용별 물수지 분석 방법론)

  • Kwon, Kyung Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.98-111
    • /
    • 2015
  • Urban environmental problems such as flooding, depletion of ground water, pollution of urban streams and the heat island effect caused by urban development and climate change can be mitigated by the improvement of the urban water cycle. For the effective planning of water cycle management it is necessary to establish aerial Hydrotope Maps, with which we can estimate the status and change of the water allowance for any site. The structure of the German water balance model BAGLUVA, which is based on soil and vegetation, was analyzed and the input data and boundary condition of the model was compared with Korean data and research results. The BAGLUVA Model consists of 5 Input categories (climate, land use, topography, soil hydrology and irrigation). The structure and interconnection of these categories are analyzed and new concepts and implementation methods of topographic factor, maximum evapotranspiration ratio, effective rooting depth and Bagrov n parameter was compared and analyzed. The relation of real evapotranspiration ($ET_a$)-maximum evapotranspiration ($ET_{max}$) - precipitation (P) was via Bagrov n factor represented. The aerial and land use oriented Hydrotope Map can help us to investigate the water balance of small catchment areas and to set goals for volume of rainwater management and LID facilities effectively in the city. Further, this map is a useful tool for implementing water resource management within landscape and urban planning.

The Application of GIS for the Prediction of Landslide-Potential Areas (산사태의 발생가능지 예측을 위한 GIS의 적용)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Kim, Sung-Gil;Lee, Ho-Chan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.38-47
    • /
    • 2002
  • This paper demonstrates a regional analysis of landslide occurrence potential by applying geographic information system to the Kumi City selected as a pilot study area. The estimate criteria related to natural and humane environmental factors which affect landslides were first established. A slope map and a aspect map were extracted from DEM, which was generated from the contour layers of digital topographic maps, and a NDVI vegetation map and a land cover map were obtained through satellite image processing. After the spatial database was constructed, indexes of landslide occurrence potential were computed and then a few landslide-potential areas were extracted by an overlay method. It was ascertained that there are high landslide-potential at areas of about 30% incline, aspects including either south or east at least, adjacent to water areas or pointed end of the water system, in or near fault zones, covered with medium vegetable. For more synthetic and accurate analysis, soil data, forest data, underground water level data, meteorological data and so on should be added to the spatial database.

  • PDF

Detection of the Coastal Wetlands Using the Sentinel-2 Satellite Image and the SRTM DEM Acquired in Gomsoman Bay, West Coasts of South Korea (Sentinel-2 위성영상과 SRTM DEM을 활용한 연안습지 탐지: 서해안 곰소만을 사례로)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, Insun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.52-63
    • /
    • 2021
  • In previous research, the coastal wetlands were detected by using the vegetation indices or land cover classification maps derived from the multispectral bands of the satellite or aerial imagery, and this approach caused the various limitations for detecting the coastal wetlands with high accuracy due to the difficulty of acquiring both land cover and topographic information by using the single remote sensing data. This research suggested the efficient methodology for detecting the coastal wetlands using the sentinel-2 satellite image and SRTM(Shuttle Radar Topography Mission) DEM (Digital Elevation Model) acquired in Gomsoman Bay, west coasts of South Korea through the following steps. First, the NDWI(Normalized Difference Water Index) image was generated using the green and near-infrared bands of the given Sentinel-2 satellite image. Then, the binary image that separating lands and waters was generated from the NDWI image based on the pixel intensity value 0.2 as the threshold and the other binary image that separating the upper sea level areas and the under sea level areas was generated from the SRTM DEM based on the pixel intensity value 0 as the threshold. Finally, the coastal wetland map was generated by overlaying analysis of these binary images. The generated coastal wetland map had the 94% overall accuracy. In addition, the other types of wetlands such as inland wetlands or mountain wetlands were not detected in the generated coastal wetland map, which means that the generated coastal wetland map can be used for the coastal wetland management tasks.

Unmanned AerialVehicles Images Based Tidal Flat Surface Sedimentary Facies Mapping Using Regression Kriging (회귀 크리깅을 이용한 무인기 영상 기반의 갯벌 표층 퇴적상 분포도 작성)

  • Geun-Ho Kwak;Keunyong Kim;Jingyo Lee;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.537-549
    • /
    • 2023
  • The distribution characteristics of tidal flat sediment components are used as an essential data for coastal environment analysis and environmental impact assessment. Therefore, a reliable classification map of surface sedimentary facies is essential. This study evaluated the applicability of regression kriging to generate a classification map of the sedimentary facies of tidal flats. For this aim, various factors such as the number of field survey data and remote sensing-based auxiliary data, the effect of regression models on regression kriging, and the comparison with other prediction methods (univariate kriging and regression analysis) on surface sedimentary facies classification were investigated. To evaluate the applicability of regression kriging, a case study using unmanned aerial vehicle (UAV) data was conducted on the Hwang-do tidal flat located at Anmyeon-do, Taean-gun, Korea. As a result of the case study, it was most important to secure an appropriate amount of field survey data and to use topographic elevation and channel density as auxiliary data to produce a reliable tidal flat surface sediment facies classification map. In addition, regression kriging, which can consider detailed characteristics of the sediment distributions using ultra-high resolution UAV data, had the best prediction performance compared to other prediction methods. It is expected that this result can be used as a guideline to produce the tidal flat surface sedimentary facies classification map.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Correction in the Measurement Error of Water Depth Caused by the Effect of Seafloor Slope on Peak Timing of Airborne LiDAR Waveforms (지형 기울기에 의한 항공 수심 라이다 수심 측정 오차 보정)

  • Sim, Ki Hyeon;Woo, Jae Heun;Lee, Jae Yong;Kim, Jae Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • Light detection and ranging (LiDAR) is one of the most efficient technologies to obtain the topographic and bathymetric map of coastal zones, superior to other technologies, such as sound navigation and ranging (SONAR) and synthetic aperture radar (SAR). However, the measurement results using LiDAR are vulnerable to environmental factors. To achieve a correspondence between the acquired LiDAR data and reality, error sources must be considered, such as the water surface slope, water turbidity, and seafloor slope. Based on the knowledge of those factors' effects, error corrections can be applied. We concentrated on the effect of the seafloor slope on LiDAR waveforms while restricting other error sources. A simulation regarding in-water beam scattering was conducted, followed by an investigation of the correlation between the seafloor slope and peak timing of return waveforms. As a result, an equation was derived to correct the depth error caused by the seafloor slope.

A Production Method of Landslide Hazard Map by Combining Logistic Regression Analysis and AHP(Analytical Hierarchy Process) Approach Selecting Target Sites for Non-point Source Pollution Management Using Analytic Hierarchy Process

  • Lee, Yong-Joon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.63-68
    • /
    • 2007
  • The LRA(Logistic Regression Analysis) conducts a quantitative analysis by collecting a lot of samples and the AHP(Analytic Hierarchy Program) makes use of expert decision influenced by subjective judgment to a certain degree. This study is to suggest a combination method in mapping landslide hazard by giving equal weight for the result of LRA and AHP. Topographic factors(slope, aspect, elevation), soil dram, soil depth and land use were adopted to classify landslide hazard areas. The three methods(LRA, AHP, the combined approach) was applied to a $520km^2$ region located in the middle of South Korea which have occurred 39 landslides during 1999 and 2003. The suggested method showed 58.9% matching rate for the real landslide sites comparing with the classified areas of high-risk landslide While LRA and AHP Showed 46.1% and 48.7% matching rates respectively. Further studies are recommended to find the optimal combining weight of LRA and AHP with more landslide data.

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

RPC MODEL FOR ORTHORECTIFYING VHRS IMAGE

  • Ke, Luong Chinh
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.631-634
    • /
    • 2006
  • Three main important sources for establishing GIS are the orthomap in scale 1:5 000 with Ground Sampling Distance of 0,5m; DEM/DTM data with height error of ${\pm}$1,0m and topographic map in scale 1: 10 000. The new era with Very High Resolution Satellite (VHRS) images as IKONOS, QuickBird, EROS, OrbView and other ones having Ground Sampling Distance (GSD) even lower than 1m has been in potential for producing orthomap in large scale 1:5 000, to update existing maps, to compile general-purpose or thematic maps and for GIS. The accuracy of orthomap generated from VHRS image affects strongly on GIS reliability. Nevertheless, orthomap accuracy taken from VHRS image is at first dependent on chosen sensor geometrical models. This paper presents, at fist, theoretical basic of the Rational Polynomial Coefficient (RPC) model installed in the commercial ImageStation Systems, realized for orthorectifying VHRS images. The RPC model of VHRS image is a replacement camera mode that represents the indirect relation between terrain and its image acquired on the flight orbit. At the end of this paper the practical accuracies of IKONOS and QuickBird image orthorectified by RPC model on Canadian PCI Geomatica System have been presented. They are important indication for practical application of producing digital orthomaps.

  • PDF

APPLICATION OF LOGISTIC REGRESS10N A MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT JANGHUNG, KOREA

  • Saro, Lee;Choi, Jae-Won;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.64-64
    • /
    • 2003
  • The aim of this study is to apply and verify of logistic regression at Janghung, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of IRS satellite images, field surveys, and maps of the topography, soil type, forest cover, geology and land use were constructed to spatial database. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography were calculated from the topographic database.13${\times}$1ure, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter and density of forest were extracted from the forest database. Land use was classified from the Landsat TM image satellite image. As each factor's ratings, the logistic regression coefficient were overlaid for landslide susceptibility mapping. Then the landslide susceptibility map was verified and compared using the existing landslide location. The results can be used to reduce hazards associated with landslides management and to plan land use and construction.

  • PDF