• Title/Summary/Keyword: topographic factors

Search Result 272, Processing Time 0.026 seconds

LANDSLIDE SUSCEPTIBILITY ANALYSIS USING GIS AND ARTIFICIAL NEURAL NETWORK

  • Lee, Moung-Jin;Won, Joong-Sun;Lee, Saro
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.256-272
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the newly developed techniques to the study area of Boun in Korea. Landslide locations were identified in the study area from interpretation of aerial photographs, field survey data, and a spatial database of the topography, soil type, timber cover, geology and land use. The landslide-related factors (slope, aspect, curvature, topographic type, soil texture, soil material, soil drainage, soil effective thickness, timber type, timber age, and timber diameter, timber density, geology and land use) were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods. For this, the weights of each factor were determinated in 3 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated and the susceptibility maps were made with a GIS program. The results of the landslide susceptibility maps were verified and compared using landslide location data. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to maintain precision and accuracy.

  • PDF

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

MINERAL POTENTIAL MAPPING AND VERIFICATION OF LIMESTONE DEPOSITS USING GIS AND ARTIFICIAL NEURAL NETWORK IN THE GANGREUNG AREA, KOREA

  • Oh, Hyun-Joo;Lee, Sa-Ro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.710-712
    • /
    • 2006
  • The aim of this study was to analyze limestone deposits potential using an artificial neural network and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential deposits in the Gangreung area, Korea. A spatial database considering deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The factors relating to 44 limestone deposits were the geological data, geochemical data and geophysical data. These factors were used with an artificial neural network to analyze mineral potential. Each factor’s weight was determined by the back-propagation training method. Training area was applied to analyze and verify the effect of training. Then the mineral deposit potential indices were calculated using the trained back-propagation weights, and potential map was constructed from GIS data. The mineral potential map was then verified by comparison with the known mineral deposit areas. The verification result gave accuracy of 87.31% for training area.

  • PDF

Analysis of Terrain by LIDAR Data (LiDAR 자료에 의한 지형해석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;We, Gwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.389-397
    • /
    • 2006
  • The purpose of the present paper is to offer an analysis of LiDAR data processing and three dimensional terrain for Geographic Information System (CIS) applications. Generally, LiDAR survey is the method which obtains quantitative and qualitative information of the terrain using airborne laser scanning (ALS). We will get a most topographic data at a Triangular Irregular Network (TIN), Digital Surface Model (DSM) and Digital Elevation Model (DEM) using LiDAR data. We examined many factors such as visibility, hillshade, aspect and slope using DEM and DSM. The analyzing results obtained from each item are thought to be regarded as leading factors in the terrain analysis. It is to be hoped that LiDAR survey will contribute a new approach to the terrain analysis.

Effect of Spatial Resolutions on the Accuracy to Landslide Susceptibility Mapping

  • Choi, J. W.;Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.138-140
    • /
    • 2003
  • The aim of this study is to evaluate the effect of spatial resolutions on the accuracy to landslide susceptibility mapping. For this, landslide locations were identified in the Boun, Korea from interpretation of aerial photographs and field surveys. The topographic, soil, forest, geologic, linearment and land use data were collected, processed and constructed into a spatial database using GIS and remote sensing data. The 15 factors that influence landslide occurrence were extracted and calculated from the spatial database with 5m, 10m, 30m, 100m and 200m spatial resolutions. Landslide hazardous area were analysed and mapped using the landslide-occurrence factors by probability model, likelihood ratio, for the five cases spatial resolutions. The results of the analysis were verified using the landslide location data. In the cases of spatial resolution 5m, 10m and 30m, the verification results was similar, but in the cases of 100m and 200m the results worse than the others. Because the scale of input data was 1:5,000 ? 1:50,000, so the cases of 5m, 10m and 30m have similar accuracy but the cases of 100m and 200m have the lower accuracy. From this, there is an effect of spatial resolutions on accuracy and landslide susceptibility mapping the result is dependent on input map.

  • PDF

Development of Monthly Hydrological Cycle Assessment System Using Dynamic Water Balance Model Based on Budyko Framework (Budyko 프레임워크 기반 동적 물수지 모형을 활용한 월 단위 물순환 평가체계 개발)

  • Kim, Kyeung;Hwang, Soonho;Jun, Sang-Min;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.71-83
    • /
    • 2022
  • In this study, an indicator and assessment system for evaluating the monthly hydrological cycle was prepared using simple factors such as the landuse status of the watershed and topographic characteristics to the dynamic water balance model (DWBM) based on the Budyko framework. The parameters a1 of DWBM are introduced as hydrologic cycle indicators. An indicator estimation regression model was developed using watershed characteristics data for the introduced indicator, and an assessment system was prepared through K-means cluster analysis. The hydrological cycle assessment system developed in this study can assess the hydrological cycle with simple data such as land use, CN, and watershed slope, so it can quickly assess changes in hydrological cycle factors in the past and present. Because of this advantage is expected that the developed assessment system can predict changes in the hydrological cycle and use an auxiliary tool for policymaking.

Analysis of Landslide Hazard Area using RS/GIS (RS/GIS를 이용한 산사태 위험지역 분석)

  • Lee Yong-Jun;Park Geun-Ae;Kim Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.202-205
    • /
    • 2006
  • The objective of this study is to analyze the hazard-areas for landslide using GIS and RS. LRA (Logistic Regression Analysis) and AHP (Analytic Hierarchy Program) methods were used for evaluation of the hazard-areas by six topographic factors (slope, aspect, elevation, soil drain, soil depth, land use). These methods were applied to Anseong-si where frequent landslides were occurred mainly by the regional heavy rainfall. A landslide hazard-map of Anseong-si could describe into 7 hazard-grades. As results, LRA method was underestimated in higher grades areas, while AHP method was underestimated in lower grades areas. In order to evaluate the hazard-areas for landslides with accuracy, these results of each method were overlapped and the results of suggested method were compared with the historical landslide hazard records of KFRI (Korea Forest Research Institute).

  • PDF

A PRODUCTION METHOD OF LANDSLIDE HAZARD MAP BY COMBINING LOGISTIC REGRESSION ANALYSIS AND AHP (ANALYTICAL HIERARCHY PROCESS) APPROACH

  • Lee, Yong-Jun;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.547-550
    • /
    • 2006
  • This study is to suggest a methodology to produce landslide hazard map by combining LRA (Logistic Regression Analysis) and AHP (Analytic Hierarchy Program) Approach. Topographic factors (slope, aspect, elevation), soil drain, soil depth and land use were adopted to classify landslide hazard areas. The method was applied to a 520 $km^2$ region located in the middle of South Korea which have occurred 39 landslides during 1999 and 2003. The suggested method showed 58.9 % matching rate for the real landslide sites comparing with the classified areas of high-risk landslide while LRA and AHP showed 46.1 % and 48.7 % matching rates respectively.

  • PDF

Advanced Surface Modification Techniques for Enhancing Osseointegration of Titanium Implant (임상가를 위한 특집 1 - 티타늄 임플란트의 골융합 증진을 위한 최신 표면처리 기술)

  • Song, Ho-Jun
    • The Journal of the Korean dental association
    • /
    • v.48 no.2
    • /
    • pp.96-105
    • /
    • 2010
  • Titanium implant is used as the most popular dental material for replacement of missing teeth recently. A lot of studies on the surface modification of titanium implant have been carried out for enhancing osseointegration. The surface modification techniques could be classified as follows; topographic modifications which provide roughness and porosity, chemical surface modificationss or deposition of osseoconductive materials, and biochemical modifications to immobilize bone growth factors on titanium surface. In this study, the current and ongoing surface modification techniques and its typical characteristics used in clinics were reviewed. In the future, study and implication about biochemical modifications including patient' s individual characteristics will be important.

Analysis of Effects on Topography for P-V System (태양광입지선정을 위한 지형분석방법 소개 및 영향분석)

  • Kim, Young-Deug;Ahn, In-Soo;Kim, Min-Su;Chang, Jeong-Ho;Chang, Moon-Soung
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • In design PV (photovoltaic) system, there are many important factors to consider for best site selection. It is essential to understand to know the amount of sunlight available and how to minimize the shadings. This study presents basic concepts for understanding sun's position and insolation. also it gives easy tools for topography analysis. Finally, this study shows some theoretical calculations of power generation losses by topographic obstacle's elevations and disadvantages in economic feasibility, that is about 7million won loss per year for case of 10 degree topography elevation with assuming average Korea's topography elevation as 5 degree.

  • PDF