• Title/Summary/Keyword: topic tracking

Search Result 62, Processing Time 0.03 seconds

Individual Interests Tracking : Beyond Macro-level Issue Tracking (거시적 이슈 트래킹의 한계 극복을 위한 개인 관심 트래킹 방법론)

  • Liu, Chen;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.13 no.4
    • /
    • pp.275-287
    • /
    • 2014
  • Recently, the volume of unstructured text data generated by various social media has been increasing rapidly; consequently, the use of text mining to support decision-making has also been growing. In particular, academia and industry are paying significant attention to topic analysis in order to discover the main issues from a large volume of text documents. Topic analysis can be regarded as static analysis because it analyzes a snapshot of the distribution of various issues. In contrast, some recent studies have attempted to perform dynamic issue tracking, which analyzes and traces issue trends during a predefined period. However, most traditional issue tracking methods have a common limitation : when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. Additionally, traditional issue tracking methods do not concentrate on the transition of individuals' interests from certain issues to others, although the methods can illustrate macro-level issue trends. In this paper, we propose an individual interests tracking methodology to overcome the two limitations of traditional issue tracking methods. Our main goal is not to track macro-level issue trends but to analyze trends of individual interests flow. Further, our methodology has extensible characteristics because it analyzes only newly added documents when the period of analysis is extended. In this paper, we also analyze the results of applying our methodology to news articles and their access logs.

Contact Tracking Development Trend Using Bibliometric Analysis

  • Li, Chaoqun;Chen, Zhigang;Yu, Tongrui;Song, Xinxia
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.359-373
    • /
    • 2022
  • The new crown pneumonia (COVID-19) has become a global epidemic. The disease has spread to most countries and poses a challenge to the healthcare system. Contact tracing technology is an effective way for public health to deal with diseases. Many experts have studied traditional contact tracing and developed digital contact tracking. In order to better understand the field of contact tracking, it is necessary to analyze the development of contact tracking in the field of computer science by bibliometrics. The purpose of this research is to use literature statistics and topic analysis to characterize the research literature of contact tracking in the field of computer science, to gain an in-depth understanding of the literature development status of contact tracking and the trend of hot topics over the past decade. In order to achieve the aforementioned goals, we conducted a bibliometric study in this paper. The study uses data collected from the Scopus database. Which contains more than 10,000 articles, including more than 2,000 in the field of computer science. For popular trends, we use VOSviewer for visual analysis. The number of contact tracking documents published annually in the computer field is increasing. At present, there are 200 to 300 papers published in the field of computer science each year, and the number of uncited papers is relatively small. Through the visual analysis of the paper, we found that the hot topic of contact tracking has changed from the past "mathematical model," "biological model," and "algorithm" to the current "digital contact tracking," "privacy," and "mobile application" and other topics. Contact tracking is currently a hot research topic. By selecting the most cited papers, we can display high-quality literature in contact tracking and characterize the development trend of the entire field through topic analysis. This is useful for students and researchers new to field of contact tracking ai well as for presenting our results to other subjects. Especially when comprehensive research cannot be conducted due to time constraints or lack of precise research questions, our research analysis can provide value for it.

Phrase-based Topic and Sentiment Detection and Tracking Model using Incremental HDP

  • Chen, YongHeng;Lin, YaoJin;Zuo, WanLi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5905-5926
    • /
    • 2017
  • Sentiments can profoundly affect individual behavior as well as decision-making. Confronted with the ever-increasing amount of review information available online, it is desirable to provide an effective sentiment model to both detect and organize the available information to improve understanding, and to present the information in a more constructive way for consumers. This study developed a unified phrase-based topic and sentiment detection model, combined with a tracking model using incremental hierarchical dirichlet allocation (PTSM_IHDP). This model was proposed to discover the evolutionary trend of topic-based sentiments from online reviews. PTSM_IHDP model firstly assumed that each review document has been composed by a series of independent phrases, which can be represented as both topic information and sentiment information. PTSM_IHDP model secondly depended on an improved time-dependency non-parametric Bayesian model, integrating incremental hierarchical dirichlet allocation, to estimate the optimal number of topics by incrementally building an up-to-date model. To evaluate the effectiveness of our model, we tested our model on a collected dataset, and compared the result with the predictions of traditional models. The results demonstrate the effectiveness and advantages of our model compared to several state-of-the-art methods.

Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2014
  • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

A Study on Issue Tracking on Multi-cultural Studies Using Topic Modeling (토픽 모델링을 활용한 다문화 연구의 이슈 추적 연구)

  • Park, Jong Do
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.273-289
    • /
    • 2019
  • The goal of this study is to analyze topics discussed in academic papers on multiculture in Korea to figure out research trends in the field. In order to do topic analysis, LDA (Latent Dirichlet Allocation)-based topic modeling methods are employed. Through the analysis, it is possible to track topic changes in the field and it is found that topics related to 'social integration' and 'multicultural education in schools' are hot topics, and topics related to 'cultural identity and nationalism' are cold topics among top five topics in the field.

Depth tracking of occluded ships based on SIFT feature matching

  • Yadong Liu;Yuesheng Liu;Ziyang Zhong;Yang Chen;Jinfeng Xia;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1066-1079
    • /
    • 2023
  • Multi-target tracking based on the detector is a very hot and important research topic in target tracking. It mainly includes two closely related processes, namely target detection and target tracking. Where target detection is responsible for detecting the exact position of the target, while target tracking monitors the temporal and spatial changes of the target. With the improvement of the detector, the tracking performance has reached a new level. The problem that always exists in the research of target tracking is the problem that occurs again after the target is occluded during tracking. Based on this question, this paper proposes a DeepSORT model based on SIFT features to improve ship tracking. Unlike previous feature extraction networks, SIFT algorithm does not require the characteristics of pre-training learning objectives and can be used in ship tracking quickly. At the same time, we improve and test the matching method of our model to find a balance between tracking accuracy and tracking speed. Experiments show that the model can get more ideal results.

Resolving Grammatical Marking Ambiguities of Korean: An Eye-tracking Study (안구운동 추적을 통한 한국어 중의성 해소과정 연구)

  • Kim Youngjin
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.4
    • /
    • pp.49-59
    • /
    • 2004
  • An eye-tracking experiment was conducted to examine resolving processes of grammatical marking ambiguities of Korean. and to evaluate predictions from the garden-path model and the constraint-based models on the processing of Korean morphological information. The complex NP clause structure that can be parsed according to the minimal attachment principle was compared to the embedded relative clause structures that have one of the nominative marker (-ka), the delimiter (-man, which roughly corresponds to the English word 'only'), or the topic marker (-nun) on the first NPs. The results clearly showed that Korean marking ambiguities are resolved by the minimal attachment principle, and the topic marker affects reparsing procedures. The pattern of eye fixation times was more compatible with the garden-path model, and was not consistent with the predictions of the constraint-based accounts. Suggestions for further studies were made.

  • PDF

Design of Topic Detection and Tracking System for QA in Encyclopedia (QA를 위한 백과사전 사건 추적 시스템의 설계)

  • Jang Hye-Ju;Jung Yu-Chel;Kang So-Yeong;Song Sa-Hwang;Un Jin;Song Hoon;Myaeng Sung-Hyon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.22-24
    • /
    • 2006
  • 본 논문은 백과사전 QA에서 여러 문서에서 정답을 추출한 후 종합하여 답을 출력하여야 하는 질의를 위한 백과사전 사건 추적 시스템을 제안한다. 본 시스템은 사건 관련 질문과 문서의 속성을 반영할 수 있는 템플릿을 정의하여 문서를 추적하며, 하나의 사건은 '제목' '시간', '장소' '주체', '범주'의 5가지 속성을 가진다. 이러한 방법론을 통하여 기존 QA 시스템의 정답 추출 성능 향상에 도움을 주고, 정보 구성(organizing)과 TDT(Topic Detection and Tracking) 연구에서의 새로운 관점과 방향을 제시하고자 한다.

  • PDF

A real-time face tracking method using fuzzy controller (Fuzzy controller를 이용한 실시간 얼굴 추적하는 방법)

  • Sa, In-Kyu;Ahn, Ho-Seok;Lee, Hyung-Kyu;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.333-334
    • /
    • 2008
  • A real-time face tracking is a broad topic, covering a large spectrum of technologies and applications. Briefly face tracking is a kind of tracing technique which follows human face in any directions. It needs some algorithms such as human face detection and motion controller to track face. Moreover, both processing time and calculation time are the most important factors that influence to drive tracking system. In this paper, two algorithms are used to find human face: earn-shift algorithm and face detection algorithm using OpenCV. Fuzzy controller is utilized to move pan-tilt camera system which can move four directions along to x-y axis.

  • PDF