• 제목/요약/키워드: topic distillation

검색결과 2건 처리시간 0.01초

웹 사이트 구조를 이용한 토픽 검색 연구 (An Experimental Study on Topic Distillation Using Web Site Structure)

  • 이지숙;정영미
    • 정보관리학회지
    • /
    • 제24권3호
    • /
    • pp.201-218
    • /
    • 2007
  • 이 연구에서는 TRBC이 제시한 토픽 검색의 정의에 따라 질의에 적합한 웹 사이트를 검색하는 효과적인 토픽 검색 알고리즘을 제안하고 실험을 통해 그 성능을 평가하였다. 이 연구의 토픽 검색 알고리즘은 먼저 질의에 대한 웹 페이지 검색 결과로부터 적합한 웹 사이트를 선정한 다음, 선정된 사이트의 구조를 이용하여 질의에 대한 적합성 점수를 산출한다. TREC의 .GOV 실험 문헌 집단과 TREC-2004 실험의 질의 및 적합문헌 리스트를 이용한 검색 실험 결과 이 토픽 검색 알고리즘은 상위 10위 안에 최소 2개 이상의 적합 사이트를 검색하여 비교적 높은 수준의 성능을 보였다. 또한 TREC-2004의 적합문헌 리스트 분석을 통해 적합문헌 선정에 토픽 검색의 정의가 엄격하게 적용되지 않은 경우가 있음을 확인하고, 수정된 적합문헌 리스트를 이용하여 토픽 검색 성능을 재평가한 결과 이 연구에서 제안한 토픽 검색 알고리즘의 성능이 월등히 향상되었다.

Novel Category Discovery in Plant Species and Disease Identification through Knowledge Distillation

  • Jiuqing Dong;Alvaro Fuentes;Mun Haeng Lee;Taehyun Kim;Sook Yoon;Dong Sun Park
    • 스마트미디어저널
    • /
    • 제13권7호
    • /
    • pp.36-44
    • /
    • 2024
  • Identifying plant species and diseases is crucial for maintaining biodiversity and achieving optimal crop yields, making it a topic of significant practical importance. Recent studies have extended plant disease recognition from traditional closed-set scenarios to open-set environments, where the goal is to reject samples that do not belong to known categories. However, in open-world tasks, it is essential not only to define unknown samples as "unknown" but also to classify them further. This task assumes that images and labels of known categories are available and that samples of unknown categories can be accessed. The model classifies unknown samples by learning the prior knowledge of known categories. To the best of our knowledge, there is no existing research on this topic in plant-related recognition tasks. To address this gap, this paper utilizes knowledge distillation to model the category space relationships between known and unknown categories. Specifically, we identify similarities between different species or diseases. By leveraging a fine-tuned model on known categories, we generate pseudo-labels for unknown categories. Additionally, we enhance the baseline method's performance by using a larger pre-trained model, dino-v2. We evaluate the effectiveness of our method on the large plant specimen dataset Herbarium 19 and the disease dataset Plant Village. Notably, our method outperforms the baseline by 1% to 20% in terms of accuracy for novel category classification. We believe this study will contribute to the community.