• Title/Summary/Keyword: top-k query

Search Result 66, Processing Time 0.025 seconds

Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B

  • Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Kim, Yong-Seong;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.869-880
    • /
    • 2012
  • Identification of the selective chemical features for Aurora-B inhibitors gained much attraction in drug discovery for the treatment of cancer. Hence to identify the Aurora-B critical features various techniques were utilized such as pharmacophore generation, virtual screening, homology modeling, molecular dynamics, and docking. Top ten hypotheses were generated for Aurora-B and Aurora-A. Among ten hypotheses, HypoB1 and HypoA1 were selected as a best hypothesis for Aurora-B and Aurora-A based on cluster analysis and ranking score, respectively. Test set result revealed that ring aromatic (RA) group in HypoB1 plays an essential role in differentiates Aurora-B from Aurora-A inhibitors. Hence, HypoB1 used as 3D query in virtual screening of databases and the hits were sorted out by applying drug-like properties and molecular docking. The molecular docking result revealed that 15 hits have shown strong hydrogen bond interactions with Ala157, Glu155, and Lys106. Hence, we proposed that HypoB1 might be a reasonable hypothesis to retrieve the structurally diverse and selective leads from various databases to inhibit Aurora-B.

The Ontology Based, the Movie Contents Recommendation Scheme, Using Relations of Movie Metadata (온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법)

  • Kim, Jaeyoung;Lee, Seok-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-44
    • /
    • 2013
  • Accessing movie contents has become easier and increased with the advent of smart TV, IPTV and web services that are able to be used to search and watch movies. In this situation, there are increasing search for preference movie contents of users. However, since the amount of provided movie contents is too large, the user needs more effort and time for searching the movie contents. Hence, there are a lot of researches for recommendations of personalized item through analysis and clustering of the user preferences and user profiles. In this study, we propose recommendation system which uses ontology based knowledge base. Our ontology can represent not only relations between metadata of movies but also relations between metadata and profile of user. The relation of each metadata can show similarity between movies. In order to build, the knowledge base our ontology model is considered two aspects which are the movie metadata model and the user model. On the part of build the movie metadata model based on ontology, we decide main metadata that are genre, actor/actress, keywords and synopsis. Those affect that users choose the interested movie. And there are demographic information of user and relation between user and movie metadata in user model. In our model, movie ontology model consists of seven concepts (Movie, Genre, Keywords, Synopsis Keywords, Character, and Person), eight attributes (title, rating, limit, description, character name, character description, person job, person name) and ten relations between concepts. For our knowledge base, we input individual data of 14,374 movies for each concept in contents ontology model. This movie metadata knowledge base is used to search the movie that is related to interesting metadata of user. And it can search the similar movie through relations between concepts. We also propose the architecture for movie recommendation. The proposed architecture consists of four components. The first component search candidate movies based the demographic information of the user. In this component, we decide the group of users according to demographic information to recommend the movie for each group and define the rule to decide the group of users. We generate the query that be used to search the candidate movie for recommendation in this component. The second component search candidate movies based user preference. When users choose the movie, users consider metadata such as genre, actor/actress, synopsis, keywords. Users input their preference and then in this component, system search the movie based on users preferences. The proposed system can search the similar movie through relation between concepts, unlike existing movie recommendation systems. Each metadata of recommended candidate movies have weight that will be used for deciding recommendation order. The third component the merges results of first component and second component. In this step, we calculate the weight of movies using the weight value of metadata for each movie. Then we sort movies order by the weight value. The fourth component analyzes result of third component, and then it decides level of the contribution of metadata. And we apply contribution weight to metadata. Finally, we use the result of this step as recommendation for users. We test the usability of the proposed scheme by using web application. We implement that web application for experimental process by using JSP, Java Script and prot$\acute{e}$g$\acute{e}$ API. In our experiment, we collect results of 20 men and woman, ranging in age from 20 to 29. And we use 7,418 movies with rating that is not fewer than 7.0. In order to experiment, we provide Top-5, Top-10 and Top-20 recommended movies to user, and then users choose interested movies. The result of experiment is that average number of to choose interested movie are 2.1 in Top-5, 3.35 in Top-10, 6.35 in Top-20. It is better than results that are yielded by for each metadata.

Bulk Insertion Method for R-tree using Seeded Clustering (R-tree에서 Seeded 클러스터링을 이용한 다량 삽입)

  • 이태원;문봉기;이석호
    • Journal of KIISE:Databases
    • /
    • v.31 no.1
    • /
    • pp.30-38
    • /
    • 2004
  • In many scientific and commercial applications such as Earth Observation System (EOSDIS) and mobile Phone services tracking a large number of clients, it is a daunting task to archive and index ever increasing volume of complex data that are continuously added to databases. To efficiently manage multidimensional data in scientific and data warehousing environments, R-tree based index structures have been widely used. In this paper, we propose a scalable technique called seeded clustering that allows us to maintain R-tree indexes by bulk insertion while keeping pace with high data arrival rates. Our approach uses a seed tree, which is copied from the top k levels of a target R-tree, to classify input data objects into clusters. We then build an R-tree for each of the clusters and insert the input R-trees into the target R-tree in bulk one at a time. We present detailed algorithms for the seeded clustering and bulk insertion as well as the results from our extensive experimental study. The experimental results show that the bulk insertion by seeded clustering outperforms the previously known methods in terms of insertion cost and the quality of target R-trees measured by their query performance.

인터넷 질의 처리를 위한 웨이블릿 변환에 기반한 통합 요약정보의 관리

  • Joe, Moon-Jeung;Whang, Kyu-Young;Kim, Sang-Wook;Shim, Kyu-Seok
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.702-714
    • /
    • 2001
  • As Internet technology evolves, there is growing need of Internet queries involving multiple information sources. Efficient processing of such queries necessitates the integrated summary data that compactly represents the data distribution of the entire database scattered over many information sources. This paper presents an efficient method of managing the integrated summary data based on the wavelet transform and addresses Internet query processing using the integrated summary data. The simplest method for creating the integrated summary data would be to summarize the integrated data sidtribution obtained by merging the data distributions in multiple information sources. However, this method suffers from the high cost of transmitting storing and merging a large amount of data distribution. To overcome the drawbacks, we propose a new wavelet transform based method that creates the integrated summary data by merging multiple summary data and effective method for optimizing Internet queries using it A wavelet transformed summary data is converted to satisfy conditions for merging. Moreover i the merging process is very simpe owing to the properties of the wavelet transform. we formally derive the upper bound of the error of the wavelet transformed intergrated summary data. Compared with the histogram-based integrated summary data the wavelet transformedintegrated summary data provesto be 1.6~5.5 time more accurate when used for selectivity estimation in experiments. In processing Internet top-N queries involving 56 information sources using the integrated summary data reduces the processing cost to 1/44 of the cost of not using it.

  • PDF

An XML-QL to SQL Translator for Processing XML Data (XML 데이타 처리를 위한 XML-QL to SQL 번역기)

  • Jang, Gyeong-Ja;Lee, Gi-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • XML has been proposed as an international standard for organizing and exchanging a great diversity of the Web data. It is important to retrieve components of stored XML documents that are needed by a wide variety of applications. In this paper, we suggest a method to store XML documents and to retrieve an XML data. In other words, we suggest the method of retrieving XML data is using XML -QL. So we need to mapping XML-QL to SQL translator on top of an RDBMS. The contributions of this paper include, besides the detailed design and implementation of the translator, demonstration of feasibility of such a translator, and a comprehensive classification of XML queries and their mappings to SQL relational queries.

Methods for Integration of Documents using Hierarchical Structure based on the Formal Concept Analysis (FCA 기반 계층적 구조를 이용한 문서 통합 기법)

  • Kim, Tae-Hwan;Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.63-77
    • /
    • 2011
  • The World Wide Web is a very large distributed digital information space. From its origins in 1991, the web has grown to encompass diverse information resources as personal home pasges, online digital libraries and virtual museums. Some estimates suggest that the web currently includes over 500 billion pages in the deep web. The ability to search and retrieve information from the web efficiently and effectively is an enabling technology for realizing its full potential. With powerful workstations and parallel processing technology, efficiency is not a bottleneck. In fact, some existing search tools sift through gigabyte.syze precompiled web indexes in a fraction of a second. But retrieval effectiveness is a different matter. Current search tools retrieve too many documents, of which only a small fraction are relevant to the user query. Furthermore, the most relevant documents do not nessarily appear at the top of the query output order. Also, current search tools can not retrieve the documents related with retrieved document from gigantic amount of documents. The most important problem for lots of current searching systems is to increase the quality of search. It means to provide related documents or decrease the number of unrelated documents as low as possible in the results of search. For this problem, CiteSeer proposed the ACI (Autonomous Citation Indexing) of the articles on the World Wide Web. A "citation index" indexes the links between articles that researchers make when they cite other articles. Citation indexes are very useful for a number of purposes, including literature search and analysis of the academic literature. For details of this work, references contained in academic articles are used to give credit to previous work in the literature and provide a link between the "citing" and "cited" articles. A citation index indexes the citations that an article makes, linking the articleswith the cited works. Citation indexes were originally designed mainly for information retrieval. The citation links allow navigating the literature in unique ways. Papers can be located independent of language, and words in thetitle, keywords or document. A citation index allows navigation backward in time (the list of cited articles) and forwardin time (which subsequent articles cite the current article?) But CiteSeer can not indexes the links between articles that researchers doesn't make. Because it indexes the links between articles that only researchers make when they cite other articles. Also, CiteSeer is not easy to scalability. Because CiteSeer can not indexes the links between articles that researchers doesn't make. All these problems make us orient for designing more effective search system. This paper shows a method that extracts subject and predicate per each sentence in documents. A document will be changed into the tabular form that extracted predicate checked value of possible subject and object. We make a hierarchical graph of a document using the table and then integrate graphs of documents. The graph of entire documents calculates the area of document as compared with integrated documents. We mark relation among the documents as compared with the area of documents. Also it proposes a method for structural integration of documents that retrieves documents from the graph. It makes that the user can find information easier. We compared the performance of the proposed approaches with lucene search engine using the formulas for ranking. As a result, the F.measure is about 60% and it is better as about 15%.