• 제목/요약/키워드: tool-path

검색결과 829건 처리시간 0.027초

Design of Robot Direct-Teaching Tool and its Application to Path Generation for Die Induction Hardening

  • Ahn, Jae-Hyung;Sungchul Kang;Changhyun Cho;Jisun Hwang;Mansuk Suh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.118.5-118
    • /
    • 2002
  • To apply induction hardening method to a press die having 3-D free surface, the induction hardening tool moves on a press die above 1~2mm gap with constant velocity. Since the induction hardening process requires its own hardening path for each die, a direct teaching method which generates working path directly guided by operators is more suitable than an offline method using CAD/CAM data. The direct teaching apparatus in this work includes a teaching tool with a force/torque sensor and data processing computer to finally generate robot's Induction hardening program , in direct teaching operation, an operator teaches working path maintaining contact with surface of press die by holding...

  • PDF

Automatic NC-Date Generation Method for 5-axis Cutting of Turbine-Blades by Finding Safe Heel-Angles and Adaptive

  • Piao, Cheng-Dao;Lee, Cheol-Soo;Cho, Kyu-Zong;Park, Gwang--Ryeol
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.753-761
    • /
    • 2004
  • In this paper, an efficient method for generating 5-axis cutting data for a turbine blade is presented. The interference elimination of 5-axis cutting currently is very complicated, and it takes up a lot of time. The proposed method can generate an interference-free tool path, within an allowance range. Generating the cutting data just point to the cutting process and using it to obtain NC data by calculating the feed rate, allows us to maintain the proper feed rate of the 5-axis machine. This paper includes the algorithms for: (1) CL data generation by detecting an interference-free heel angle, (2) finding the optimal tool path interval considering the cusp-height, (3) finding the adaptive feed rate values for each cutter path, and (4) the inverse kinematics depending on the structure of the 5-axis machine, for generating the NC data.

마이크로 마스크를 가진 미세입자분사가공을 위한 가공경로의 생성 (Tool Path Generation for Micro-Abrasive Jet Machining Process with Micro-Mask)

  • 김호찬;이인환;고태조
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.95-101
    • /
    • 2011
  • Micro-abrasive jet machining(${\mu}AJM$) using mask is a fine machining technology which can carve a figure on a material. The mask should have holes exactly same as the required figure. Abrasive particles are jetted into the holes of the mask and it collide with the material. The collision break off small portion of the material. And the ${\mu}AJM$ nozzle should move all over the machining area. However, in general the carving shape is modeled as in a bitmap figure, because it often contains characters. And the mask model is also often modeled from the bitmap image. Therefore, the machining path of the ${\mu}AJM$ also efficient if it can be generated from the bitmap image. This paper suggest an algorithm which can generate ${\mu}AJM$ tool path directly from the bitmap image of the carving figure. And shows some test results and applications.

Collision-free tool orientation optimization in five-axis machining of bladed disk

  • Chen, Li;Xu, Ke;Tang, Kai
    • Journal of Computational Design and Engineering
    • /
    • 제2권4호
    • /
    • pp.197-205
    • /
    • 2015
  • Bladed disk (BLISK) is a vital part in jet engines with a complicated shape which is exclusively machined on a five-axis machine and requires high accuracy of machining. Poor quality of tool orientation (e.g., false tool positioning and unsmooth tool orientation transition) during the five-axis machining may cause collision and machine vibration, which will debase the machining quality and in the worst case sabotage the BLISK. This paper presents a reference plane based algorithm to generate a set of smoothly aligned tool orientations along a tool path. The proposed method guarantees that no collision would occur anywhere along the tool path, and the overall smoothness is globally optimized. A preliminary simulation verification of the proposed algorithm is conducted on a BLISK model and the tool orientation generated is found to be stable, smooth, and well-formed.

포켓가공을 위한 오프셋 및 공구경로 연결 알고리즘 (Contour Parallel Offsetting and Tool-Path Linking Algorithm For Pocketing)

  • 허진헌;김영일;전차수
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.200-207
    • /
    • 2003
  • Presented in this paper is a new fast and robust algorithm generating NC tool path for 2D pockets with islands. The input shapes are composed of line segments and cricular arcs. The algorithm has two steps: creation of successive offset loops and linking the loops to tool path. A modified pair-wise technique is developed in order to speed up and stabilize the offset process, and the linking algorithm is focused on minimizing tool retractions and preventing thin-wall rotting The proposed algorithm has been implemented In C++ and some illustrative examples are presented to show the practical strength of the algorithm.

  • PDF

Improvement of Computer-Aided Manufacturing (CAM) Software for Laser Machining

  • Bayesteh, Abdoleza;Ko, Junghyuk;Ahmad, Farid;Jun, Martin B.G.
    • 한국생산제조학회지
    • /
    • 제24권4호
    • /
    • pp.374-385
    • /
    • 2015
  • In this paper, effective and user friendly CAM software is presented that automatically generates any three dimensional complex toolpaths according to a CAD drawing. In advanced manufacturing, often it is essential to scan the sample following a complex trajectory which consists of short (few microns) and multidirectional moves. The reported CAM software offers constant velocity for all short trajectory elements and provides an efficient shift of tool path direction in sharp corners of a tool trajectory, which is vital for any laser, based precision machining. The software also provides fast modification of tool path, automatic and efficient sequencing of path elements in a complicated tool trajectory, location of reference point and automatic fixing of geometrical errors in imported drawing exchange files (DXF) or DWG format files.

비균등분할 등고선 가공법에 의한 황삭가공경로의 자동생성 (Automatic Generation of Roughing Tool Path upon Unequal Level Line Matching)

  • 김병희
    • 산업기술연구
    • /
    • 제15권
    • /
    • pp.23-32
    • /
    • 1995
  • The methodology of automatic generation of tool path for rough cutting of a sculptured surface is proposed with the improved contouring method, unequal level line machining. Considering the surface shape and the diameter of the endmill, the distance between level lines is obtained. To improve MMR, initial rough cutting is processed with the large diameter endmill and the remained material is removed by the relatively small diameter endmill. Tool path is generated from the offset curve of respective level line and the interferences between the tool and workpiece are automatically avoided. After generating NC part program, the sculptured surface is machined at the vertical machining center. From the experimental results, total cutting length and machining time are reduced more effectively than conventional contouring methods.

  • PDF

여러 개의 패치로 이루어진 곡면에서 재매개변수화를 통한 공구경로 생성 (Tool Path Generation of Multi-Patch Sculptured Surface with Reparameterization)

  • 이성근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.647-652
    • /
    • 2000
  • Recently, according to the various taste of consumers, the design of a product is changed variously and complicatedly. The complicated product is not usually constructed with one patch but multi-patch. By the way, in machining, higher precision and the reduction of leading and machining time is required. But for the multi-patch sculptured surface, the amount of machining data becomes large. This means the increase of leading and machining time. In this study, the tool path generation method with reparameterization is proposed for multi-patch sculptured surface and variable step size using NURBS is used to satisfy the precision and to reduce leading and machining time.

  • PDF

휴리스틱 알고리즘을 이용한 평면 자기연마 공구경로 최적화 (Tool-Path Optimization of Magnetic Abrasive Polishing Using Heuristic Algorithm)

  • 김상오;유만희;곽재섭
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.174-179
    • /
    • 2011
  • This paper focuses on the optimal step-over value for magnetic tool path. Since magnetic flux density is changed according to distance from center of magnetic tool. Enhanced surface roughness is also different according to change of radius. Therefore, to get a identical surface roughness on workpiece, it is necessary to find optimal tool path including step-over. In this study, response surface models for surface roughness according to change of radiuses were developed, and then optimal enhanced surface roughness for each radius was selected using genetic algorithm and simulated annealing to investigate relation between radius and surface roughness. As a result, it found that step-over value of 6.6mm is suitable for MAP of magnesium alloy.

프로펠러 블레이드의 형상설계 및 CNC 공구경로 생성 (Parametric Shape Design and CNC Tool Path Generation of a Propeller Blade)

  • 정종윤
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.46-59
    • /
    • 1998
  • This paper presents shape design, surface construction, and cutting path generation for the surface of marine ship propeller blades. A propeller blade should be designed to satisfy performance constraints that include operational speed which impacts rotations per minutes, stresses related to deliverable horst power, and the major length of the marine ship which impacts the blade size and shape characteristics. Primary decision variables that affect efficiency in the design of a marine ship propeller blade are the blade diameter and the expanded area ratio. The blade design resulting from these performance constraints typically consists of sculptured surfaces requiring four or five axis contoured machining. In this approach a standard blade geometry description consisting of blade sections with offset nominal points recorded in an offset table is used. From this table the composite Bezier surface geometry of the blade is created. The control vertices of the Hazier surface patches are determined using a chord length fitting procedure from tile offset table data. Cutter contact points and path intervals are calculated to minimize travel distance and production time while maintaining a cusp height within tolerance limits. Long path intervals typically generate short tool paths at the expense of increased however cusp height. Likewise, a minimal tool path results in a shorter production time. Cutting errors including gouging and under-cut, which are common errors in machining sculptured surfaces, are also identified for both convex and concave surfaces. Propeller blade geometry is conducive to gouging. The result is a minimal error free cutting path for machining propeller blades for marine ships.

  • PDF