• Title/Summary/Keyword: tool steel

Search Result 955, Processing Time 0.019 seconds

Analysis of Sliding Wear Behavior of Mild Steel According to Hardness of Dissimilar Mating Materials (이종 상대재 경도에 따른 철강재료의 미끄럼 마모 특성 해석)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.195-200
    • /
    • 2016
  • This study examines the wear behavior of mild steel pins mated against alloyed tool steel discs in a pin-on-disc type sliding test machine and provides specific clarification regarding the effects of disc hardness on the wear behavior of a mating mild steel pin. The analysis confirms these effects through the observation of differences in the wear rates of the mild steel pins at low sliding speed ranges. These differences occur even though the hardness of the mating disc does not affect the wear characteristic curve patterns for the sliding speeds, regardless of the wear regime. In the running-in wear regime, increasing the hardness of the mating disc results in a decrease in the wear rates of the mild steel pins at low sliding speed ranges. However, in the steady-state wear region, the wear rate of a pin mated against the 42DISC is greater than the wear rate of a pin mated against the 30DISC, which has a lower hardness value. This means that the tribochemical reactivity of the mating disc, which is based on hardness value, influences the wear behavior of mild steel at low sliding speed ranges. In particular, oxides with higher oxygen contents, such as $Fe_2O_3$ oxides, form predominantly on the worn surface of the 42DISC. On the contrary, the wear behavior of mild steel pins at high sliding speed ranges is nearly unaffected by the hardness of the mating disc.

Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel (공구강의 고온 변형 거동 예측을 위한 모델 비교 연구)

  • Kim, Keunhak;Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

A Research on the Life Span extension of Die Block in Cold Forging Die (냉간단조금형에서 다이블록의 수명연장에 관한 연구)

  • Kim, Sei-Hwan;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.281-285
    • /
    • 2008
  • Die hobbing is one of the dieblock manufacturing methods of cold forging die, which makes the upper side of dieblock indented using master punch, hobb to produce impression not using cutting work. SKD11, alloy tool steel was used as the material of dieblock and stainless sheet metal was used as product material in cold forging work. The life span of the die was 6,000 strokes. In this research, the material of dieblock was changed into SKH51, the high speed tool steel and the product material was S45C, the carbon steel in the cold forging work. The life span of the die was 21,000 strokes, which is 350% of the life span of the die using the former method.

Surface Characteristics of Tool Steel Machined Using Micro-EDM

  • Anwar, Mohammed Muntakim;San, Wong Yoke;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.74-78
    • /
    • 2008
  • High-speed tool steels are extensively used in tooling industries for manufacturing cutting tools, forming tools, and rolls. Electrical discharge machining (EDM) has been found to be an effective process for machining these extremely hard and difficult-to-cut materials. Extensive research has been conducted to identify the optimum machining parameters for EDM with different tool steels. This paper presents a fundamental study of the surface characteristics of SKH-51 tool steel machined by micro-EDM, with particular focus on obtaining a better surface finish. An RC pulse generator was used to obtain a better surface finish as it produces fine discharge craters. The main operating parameters studied were the gap voltage and the capacitance while the resistance and other gap control parameters were kept constant. A negative tungsten electrode was used in this study. The micro-EDM performance was analyzed by atomic force microscopy to determine the average surface roughness and the distance between the highest peak and lowest valley. The topography of the machined surface was observed using a scanning electron microscope and a digital optical microscope.

The study on the influence of surface cleanness and water soluble salt on corrosion protection of epoxy resin coated carbon steel

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.163-169
    • /
    • 2014
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting and power tool treatment as well as contamination of water soluble salt. To study the effect of the surface treatments and contamination, the topology of the treated surface was observed by confocal microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with immersion test of 3.5 wt% of NaCl solution. Consequently, the surface contamination by sodium chloride with $16mg/m^2$, $48mg/m^2$ and $96mg/m^2$ didn't affect the adhesion strength for current epoxy coated carbon steel and blister and rust were not observed on the surface of epoxy coating contaminated by various concentration of sodium chloride after 20 weeks of immersion in 3.5 wt% NaCl aqueous solutions. In addition, the results of EIS test showed that the epoxy-coated carbon steel treated with steel grit blasting and power tool showed similar corrosion protection performance and surface cleanness such as Sa 3 and Sa 2.5 didn't affect the corrosion protectiveness of epoxy coated carbon steel.

Control of Tool Wear in Diamond Cutting of Steels by Intermittent Cutting Method (철강재료의 다이아몬드절삭에 있어서 단속절삭가공법의 적용에 의한 공구마모억제)

  • Chan, Song-Young;Kentaro, Nezu;Park, Chun-Hong;Toshimichi, Moriwaki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.40-46
    • /
    • 2008
  • Ultraprecision cutting of steels with geometrically defined single crystal diamond tools is handicapped by excessive tool wear. This paper presents a new approach to suppress the wear of single crystal diamond tool in cutting of steels. In general, it is said that the wear of diamond tool is caused by chemically reactive wear under high temperature and high pressure conditions. In order to suppress such chemical reactions, the time of contact between the diamond tool and the steel work in cutting was controlled by employing the intermittent cutting method such as fly-cutting. Series of intermittent cutting experiments have been carried out to control the tool-work contact time by changing one cycle of cutting length and cutting speed. The experimental results were shown that the tool wear was much dependent on the contact time regardless of the cutting speed, and that the wear was much suppressed by reducing the tool-work contact time. It is expected that the steels can be successfully cut with a single crystal diamond tool by controlling the contact time.

A Study on the Surfaces Modification of Tool Steel by YAG LASER (YAG LASER에 의한공구강의 표면개질에 관한 연구)

  • 강형식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.66-71
    • /
    • 2000
  • Laser induced surface hardening of Tool steel(STC5) can be achieved either with or without surface melting. In trans-formation hardening as the surface is heated to a temperature below its melting point and is rapidly cooled solidified microstructures are usually much finer and stronger than those of the base matals. For this reason surface modification of tool steel by YAG laser irradiation has been studied as a function of processing parameters such as power density pulse width defocusing distance and molten depth. The high energy density changes and refines the microstructure of the near surface layer. In the case of beam passes martensite formed in the melt zone exhibited very high vickers hardness values. Molten depth and width depend on defocusing distance and energy of black color painting is more absorptive than other color painting.

  • PDF

A Study of Abrasive Flow Machining on EDMed Surfacs of Tool Steel (방전가공된 공구강표면의 연마재 유동가공에 관한 연구)

  • 최재찬;김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.8-13
    • /
    • 1996
  • A relatively new non-traditional finishing process called Abrasive Flow Machining(AFM) is being used to deburr, polish and radius workpiece or produce compressive residual stresses by flowing an abrasive-laden viscoelastic compound across the surface to be machined. This paper presents the effects of AFM on surfaces of tool steel produced by EDM and W-EDM. Using AFM, white layer produced by EDM is erased almost equally and the amount of metal removal is significantly affected the initally machined surface condition of workpiece. The dimension of workiece is enlarged and its surface roughness is improved as AFM time is increased. The optimal AFM time can be established from the experimental results. It is considered that the grinding method lide AFM is useful to grind complex or slim geometry of workpiece even. Scanning Electron Microscopy(SEM) was used to study the surface characteristics of the workpiece before and after AFM.

  • PDF

Enhancenent of Wear Resistance of TiN Coated High Speed Steel Tools through Improving some Coating Processes (코팅공정 개선에 의한 TiN코팅 고속도강 공구의 내마모특성 향상)

  • Lee, Y.M.;Son, Y.H.;Kim, H.S.;Back, J.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.32-37
    • /
    • 1996
  • Using the are ion plating(AIP) process, TiN coating was deposited onto high speed steel substrates. The effects of coating thickness, titanisum interlayer and shield on wear resisting capability of the coated tools were investigated. In order to promote good adhesion between the substrate and the TiN coating a thin Ti interlayer was deposited. A shield was set up also between Ti target and high speed steel substrates to prevent molten droplets from reaching the substrate. Three series of varying thickness of TiN coated layer were prepared with or without the Ti interlayer, and with or without the shield. The tools with the Ti layer and the shield showed longer tool lifes than those of other series of tools and the commercially available TiN coated HSS tools, by up to 70%.

  • PDF

Statistical characterisation of end milling of AISI 52100 annealed bearing steel

  • Benghersallah, Mohieddine;Benchiheub, Slimane;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.137-148
    • /
    • 2018
  • The present paper is a contribution in characterising end milling process of AISI 52100 ball bearing steel through statistical analyses of variance (ANOVA). The latter has been performed to identify the effect of the cutting parameters on the machined surface roughness and the cutting tool life. Wear measurements have been carried on multilayer coated carbide inserts and the respective surface roughness has been recorded. Taguchi's technique has been adapted to conduct the design experiments in terms of orthogonal arrays according to the cutting parameters (cutting speed, feed rate and depth of cut), the type of coating (TiN, TiCN, TiAlN) and lubricating condition. Regression analyses have conducted to the development of simplified empirical models that can be effectively used to predict surface roughness and tool wear in the present milling process.