• Title/Summary/Keyword: tool radius

Search Result 293, Processing Time 0.026 seconds

Study on the tool temperature estimation for different cutting conditions in turning using a statistical method (통계적 기법을 이용한 선삭 가공 절삭조건에 따른 공구온도 예측)

  • 김성청;이응석;문홍현;송길용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.851-856
    • /
    • 1997
  • This study is on the estimation of the tool temperature for different tool nose radius and cutting conditions in turning. The experiment has been performed in different cutting conditions such as cutting speed, feed rate, and depth of cut for the tool nose radius, 0.4R, 0.8R using SMC workpiece materials. Tool temperature is measured using thermo-couple which is embedded in the insert tip. Using a multiple linear regression method, the tool temperature can be determined as an exponential equation with cutting variables and tool nose diameters for different tool materials. The equations determined in this study show a good correlation for the cutting conditions and can be used for the tool temperature estimation. The result indicates that the tool temperature decreases for ~ncreasing the tool nose radius in general. Also, nose radius hardly influences on the tool temperature compared with cutting speed, feed rate and depth of cut.

  • PDF

A Study on the Tool Temperature Estimation for Different Cutting Conditions in Turning Using a Statistical Method (통계적 기법을 이용한 선삭가공 절삭조건에 따른 공구온도 예측)

  • 송길용;문홍현;박병규;김성청;이응석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.96-102
    • /
    • 2002
  • This study is on the estimation method of toot temperature for different tool nose radius and cutting conditions in turning. Experimental analysis has been performed in different cutting conditions such as cutting speed, feed rate, and depth of cut for the tool nose radius, 0.4R, 0.8R using SMC workpiece materials. Tool temperature is measured using a thermo-couple which is embedded in the insert tip. Using multiple linear regression method, the tool temperature can be determined as an exponential equation with cutting variables and tool nose diameters for the different tool materials. The equations determined in this study show a good correlation for the cutting conditions and can be used for a tool temperature estimation technique. The result indicates that the tool temperature decreases for increasing the tool nose radius in general. Also, nose radius hardly influences on the tool temperature compared with cutting speed, feed rate and depth of cut. This method will be useful for the estimation of tool life and temperature using limited experimental data for given cutting conditions.

Thermo-viscoplastic finite element analysis of orthogonal metal cutting considered tool edge radius (공구끝단반경이 고려된 2차원 금속절삭에 대한 열-점소성 유한요소해석)

  • Kim, Kug-Weon;Lee, Woo-Young;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, thermo-viscoplastic finite element analysis of the effect of tool edge radius on cutting process are performed. The thermo-viscoplastic cutting model is capable of dealing with free chip geometry and chip-tool contact length. The coupling with thermal effects is also considered. Orthogonal cutting experiments are performed for 0.2% carbon steel with tools having 3 different edge radii and the tool forces are measured. The experimental results are discussed in comparison with the results of the FEM analysis. From the study, we confirm that this cutting model can well be applied to the cutting process considered the tool edge radius and that a major causes of the "size effect" is the tool edge radius. With numerical analysis, the effects of the tool edge radius on the stress distributions in workpiece, the temperature distributions in workpiece and tool, and the chip shape are investigated.estigated.

Roughness Characteristics of Turned Surface by Wiper Tool (Wiper 공구에 의한 선삭가공시 표면거칠기 특성)

  • Lee, Young-Moon;Ryu, Chung-Won;Son, Jae-Hwan;Kim, Sun-Il;Jung, Hee-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 2008
  • Until a recent date, the surface finish generated in turning by the conventional cutting tool is directly related to the feed rate and the size of the tool nose radius. With this tool a large feed rate will give poorer surface finish and a large nose radius will generate a better surface finish. Recently a new concept in the tool design is introduced to achieve a better surface finish at a higher feed rate. This is the wiper tool, which has the portion of nose with infinite radius. This can remove the ridges left when the conventional tool is used. In this study two series of cutting tests with the wiper tool and the conventional tool are carried out under the various cutting conditions of cutting depth, feed rate and cutting speed. The effects of the wiper design and the cutting conditions on the surface roughness resulted are carefully examined and compared.

  • PDF

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

A Study on the Cutting Resistance Characteristics of Hardended Steel according to Engagement Condition (물림조건에 따른 경화강의 절삭저항 특성에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.58-65
    • /
    • 1996
  • This thesis is concerned with the study on the characteristics of the cutting resistance occurring in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool with nose radius. For the purpose, the shape of cutting cross-section made at nose part of the tool was analyzed geometrically and the wear mechanism on the flank face of the ceramic tool is investigated. In order to investigate the characteristics of cutting resistance two categories of cutting conditions are suggested, along with geometrical analysis. One category includes the conventional cutting parameters such as feed and depth of cut, another containing new cutting parameters of thickness of cut and width of cut etc. Thickness of cut width of cut and area of undeformed chip section formed by the condition of engagement between workpiece and cutting tool are determined as the function of feed, depth of cut and nose radius of cutting too, And an effective approach angle is determined by depth of cut and nose radius.

  • PDF

CL-data Optimization of 5-axis Face-milling Via C-space and Effective-radius Map (C-space 및 유효반경-맵을 이용한 5축 페이스 밀링의 공구자세 최적화에 관한 연구)

  • 박정환;이정근
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • Five-axis NC machining, in general, is utilized in fabricating impellers, turbine blades, marine propellers that can be machined more effectively rather than three-axis machining. There have been many researches concerning tool interference avoidance, optimization of tool orientation. The C-space or Configuration-space was originated from the robotics area, which depicts interference-free joint-values in motion planning. In the paper we propose an optimizing scheme by which the maximum effective-radius of a face-milling cutter can be achieved for each CC(cutter-contact) point. Also the concept of a C-space for a CC point, the effective-radius map for 5-axis face-milling, and some illustrative examples of marine propeller machining, are presented.

Tool-Path Optimization of Magnetic Abrasive Polishing Using Heuristic Algorithm (휴리스틱 알고리즘을 이용한 평면 자기연마 공구경로 최적화)

  • Kim, Sang-Oh;You, Man-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.174-179
    • /
    • 2011
  • This paper focuses on the optimal step-over value for magnetic tool path. Since magnetic flux density is changed according to distance from center of magnetic tool. Enhanced surface roughness is also different according to change of radius. Therefore, to get a identical surface roughness on workpiece, it is necessary to find optimal tool path including step-over. In this study, response surface models for surface roughness according to change of radiuses were developed, and then optimal enhanced surface roughness for each radius was selected using genetic algorithm and simulated annealing to investigate relation between radius and surface roughness. As a result, it found that step-over value of 6.6mm is suitable for MAP of magnesium alloy.