• Title/Summary/Keyword: tool monitoring technique

Search Result 189, Processing Time 0.023 seconds

Monitoring of the Volcanic Ash Using Satellite Observation and Trajectory Analysis Model (인공위성 자료와 궤적분석 모델을 이용한 화산재 모니터링)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • Satellite remote sensing data have been valuable tool for volcanic ash monitoring. In this study, we present the results of application of satellite remote sensing data for monitoring of volcanic ash for three major volcanic eruption cases (2008 Chait$\acute{e}$n, 2010 Eyjafjallaj$\ddot{o}$kull, and 2011 Shinmoedake volcanoes). Volcanic ash detection products based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) observation data using infrared brightness temperature difference technique were compared to the forward air mass trajectory analysis by the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. There was good correlation between MODIS volcanic ash image and trajectory lines after the volcanic eruptions, which support the feasibility of using the integration of satellite observed and model derived data for volcanic ash forecasting.

Damage Detection Method of Wind Turbine Blade Using Acoustic Emission Signal Mapping (음향방출신호 맵핑을 이용한 풍력 블레이드 손상 검출 기법)

  • Han, Byeong-Hee;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.68-76
    • /
    • 2011
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. Therefore, it is required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. In this study, a new damage location method has been proposed by using signal mapping algorithm, and an experimental verification is conducted by using small wind turbine blade specimen; a part of 750 kW real blade. The results show that this new signal mapping method has high advantages such as a flexibility for sensor location, improved accuracy, high detectability. The newly proposed method was compared with traditional AE source location method based on arrival time difference.

A Gene-Tagging System for Monitoring of Xanthomonas Species

  • Song, Wan-Yeon;Steven W. Hutcheson;Efs;Norman W. Schaad
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.137-143
    • /
    • 1999
  • A novel chromosomal gene tagging technique using a specific fragment of the fatty acid desaturase-like open reading frame (des-like ORF) from the tox-argK gene cluster of Pseudomonas syringae pv. phaseolicola was developed to identify Xanthomonas spp.released into the environment as biocontrol agents. X. campestris pv. convolvuli FB-635, a pathogen of Convolvulus arvensis L., (bindweed), was chosen as the organism in which to develop and test the system. A 0.52 kb DES fragment amplified from P. syringae pv. phaseolicola C-199 was inserted into pGX15, a cosmid clone containing a 10.3 kb Eco RI-HindIII fragment derived from the xanthomonadin biosynthetic gene cluster contained in plasmid pIG102, to create a pigG::DES insertion. The 10.8 kb EcoRI-BamHI fragment carrying the pigG:: DES insertion was cloned into pLAFR3 to generate pLXP22. pLXP22 was then conjugated into X. campestris pv. convolvuli FB-635 and the pigG::DES insertion integrated into the bacterial chromosome by marker exchange. Rifampicin resistant, tetracycline sensitive, starch hydrolyzing, white colonies were used to differentiate the marked strain from yellow pigmented wild-type ones. PCR primers specific for the unique DES fragment were used for direct detection of the marked strain. Result showed the marked strain could be detected at very low levels even in the presence of high levels of other closely related or competitive bacteria. This PCR-based DES-tagging system provides a rapid and specific tool for directly monitoring the dispersal and persistence of Xanthomonas spp.released into the environment.

  • PDF

Improvement of Reliability of Static Execution Time Analysis Using Software Monitoring Technique (소프트웨어 감시 기법을 활용한 정적 실행시간 분석의 신뢰성 향상)

  • Kim, Yun-Kwan;Kim, Tae-Wan;Chang, Chun-Hyon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.37-45
    • /
    • 2010
  • A system which needs timely accuracy has to design and to verify correctly about execution-time for reliability. Accordingly, it is necessary for timing analysis tools, and much previous research worked. In timing analysis tool, there are two methods. One is a static analysis, and the other is a measurement based analysis. A static analysis is able to spend time less than a measurement based analysis method, but has low reliability of analysis result caused by hard to estimate time of I/O caused by various hardware. A measurement based analysis can be close analysis to real result, but it is hard to adapt to actual application, and spend a lot of time to get result of analysis. As such, this paper present a software monitoring architecture to supply reliability of static analysis process. In a presented architecture, it can select target as needed measurement through static analysis, and reuse result of measurement exist. Therefore, The architecture can reduce overload of time and performance for measurement, and improve the reliability which is the worst problem of static analysis.

Safety Index Evaluation from Resistivity Monitoring Data for a Reservoir Dyke (전기비저항 상시관측에 의한 제체 안전도 지수 산출)

  • Cho, In-Ky;Kang, Hyung-Jae;Lee, Byoung-Ho;Kim, Byoung-Ho;Yi, Sang-Sun;Park, Young-Gyu;Lee, Bo-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.155-162
    • /
    • 2006
  • An abnormal seepage flow, which is mainly caused by the piping, is one of the major reasons for embankment dam failure. A leakage detection is therefore a vital part of an embankment dam's monitoring. Resistivity method, which is an efficient tool to detect leakage zones, has been used all over the world for an embankment dam's monitoring. Although the resistivity method gives us very useful information about the leakage problem, there is no more quantitative interpretation than the low resistivity zones in the 2-dimensional resistivity section are regraded simply as the anomalous seepage zones. Recently, resistivity monitoring technique is applied for the detection of leakage zones. However, its interpretation still remains in the stage of presenting the resistivity ratio itself. An increased seepage flow increases a porosity and an increasing porosity decreases the dam's stability. Therefore, the porosity is one of the major factors for an embankment dam's stability. Based on Archie's experimental formula, we try to evaluate a porosity distribution from the resistivity data which is obtained on the dam's crest. We also attempt to represent a procedure to evaluate a safety index of the embankment dam from the resistivity monitoring data.

Optimum conditions for artificial neural networks to simulate indicator bacteria concentrations for river system (하천의 지표 미생물 모의를 위한 인공신경망 최적화)

  • Bae, Hun Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1053-1060
    • /
    • 2021
  • Current water quality monitoring systems in Korea carried based on in-situ grab sample analysis. It is difficult to improve the current water quality monitoring system, i.e. shorter sampling period or increasing sampling points, because the current systems are both cost- and labor-intensive. One possible way to improve the current water quality monitoring system is to adopt a modeling approach. In this study, a modeling technique was introduced to support the current water quality monitoring system, and an artificial neural network model, the computational tool which mimics the biological processes of human brain, was applied to predict water quality of the river. The approach tried to predict concentrations of Total coliform at the outlet of the river and this showed, somewhat, poor estimations since concentrations of Total coliform were rapidly fluctuated. The approach, however, could forecast whether concentrations of Total coliform would exceed the water quality standard or not. As results, modeling approaches is expected to assist the current water quality monitoring system if the approach is applied to judge whether water quality factors could exceed the water quality standards or not and this would help proper water resource managements.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Seamless Lawful Interception Handover for 3G IP Multimedia Subsystem (IMS)

  • In, Hoh Peter;Lee, Myoung-Rak;Kim, Do-Hoon;Kim, Nung-Hoe;Yoon, Byung-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1329-1345
    • /
    • 2011
  • After the 9.11 terror attack, lawful Interception (LI) has emerged as an important tool for anti-terrorist activity. Law enforcement agents and administrative government bodies effectively monitor suspicious target users of permanent IP-based network devices by LI in Packet Data Networks (PDNs). However, it is difficult to perform LI in monitoring migrating users from a location to another, who change their IPs due to the proliferation of portable Internet devices enabling 3G IP Multimedia Subsystems (IMS). The existing, manual handover technique in 3G IMS makes it even more difficult to continue the LI activities due to time-lag reissuance of LI authority warrants when the target users move to a new LI jurisdiction via a roaming service. Our proposed model is a seamless LI handover mechanism in 3G IMS to support mobility detection of the target users. The LI warrants are transferred to the new LI agent automatically with the target users when they move to a new LI jurisdiction. Thus, time-lag human intervention of reissuance of the LI warrants is removed and enables the LI authorities to continue monitoring. In the simulation of our proposed mechanism, the quality of lawful interception achieves a mean score of over 97.5% out of the possible 100% maximum score, whereas the quality of the existing mechanism has a mean score of 22.725%.

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Development of CV Control Chart Using EWMA Technique (EWMA 기법을 적용한 CV 관리도의 개발)

  • Hong, Eui-Pyo;Kang, Chang-Wook;Baek, Jae-Won;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.114-120
    • /
    • 2008
  • The control chart is widely used statistical process control(SPC) tool that searches for assignable cause of variation and detects any change of process. Generally, ${\bar{X}}-R$ control chart and ${\bar{X}}-S$ are most frequently used. When the production run is short and process parameter changes frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. The CV control chart is an effective tool to control the mean and variability of process simultaneously. The CV control chart, however, is not sensitive at small shift in the magnitude of CV. In this paper, we propose an CV-EWMA (exponentially weighted moving average) control chart which is effective in detecting a small shift of CV. Since the CV-EWMA control chart scheme can be viewed as a weighted average of all past and current CV values, it is very sensitive to small change of mean and variability of the process. We suggest the values of design parameters and show the results of the performance study of CV-EWMA control chart by the use of average run length (ARL). When we compared the performance of CV-EWMA control chart with that of the CV control chart, we found that the CV-EWMA control chart gives longer in-control ARL and much shorter out-of-control ARL.