• 제목/요약/키워드: tool geometry

검색결과 540건 처리시간 0.029초

U-bending에서의 DP780 강판의 스프링백 거동 연구 (Investigation of Springback Behavior of DP780 Steel Sheets after the U-bending Process)

  • 최민국;허훈
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.384-388
    • /
    • 2012
  • Sheet metal forming processes induce residual stress in the final product due to plastic deformation. The residual stress leads to elastic recovery of the formed part called springback, which causes shape errors in the final product. This error is a serious issue, especially for high strength steels, which are widely used in auto-body structures. Therefore, the evaluation of the amount of springback becomes critical for high strength steels. This paper investigates the springback behavior of DP780 steel sheets after the U-bending process using the geometry of the standard U-shape tool from the NUMISHEET'93 benchmark problem. The amounts of springback were measured as a function of the intrusion direction, forming speed and blank holding force.

유전알고리즘과 CFD기법을 이용한 터빈블레이드 경사각 최적화 (Leaning Angle Optimization of the Turbine Blade using the Genetic Algorithm and CFD method)

  • 이은석;정용현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.413-414
    • /
    • 2008
  • Abstract should be in English. The leaning angle optimization of turbine blade using the genetic algorithm was conducted in this paper. The calculation CFD technique was based upon the Diagonalized Alternating Directional Implicit scheme(DADI) with algebraic turbulencemodeling. The leaning angle of VKI turbine blade was represented using B-spline curve. The control points are the design variable. Genetic algorithm was taken into account as an optimization tool. The objective was to minimize the total pressure loss. The optimized final geometry shows the better aerodynamic performance compared with the initial turbine blade.

  • PDF

수치해석법에 의한 면삭밀링 작업에서의 절삭력과 표면조도에 관한 연구 (A Numerical Simulation Model for the Face Milling Operation)

  • 홍민성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.68-75
    • /
    • 1995
  • The milling process is one of the most important metal removal processes in industry. Due to the complexities inherent to the cutter insert geometry and the milling cutter kinematics, these processes leave an analytically difficult to predict texture on the machined surface's hills and valleys. The instantaneous uncut chip cross sectional area may be estimated by the relative position between the workpiece and the cutter inserts. furthermore, since the cutting forces are proportional to the instantaneous uncut chip cross sectional area, the cutting forces in face milling operations can not be estimated easily. A new simulation program which is based upon the numerical method has been proposed to estimate the cutting force components, with the ability to predict the machined surface texture left by the face milling operation.

  • PDF

접촉식 형상 측정기에 의한 표면 미세 형상 측정시 촉침 반경이 측정오차에 미치는 영향 (Effects of stylus tip radius on the measuring error in surface topography measurement by contact stylus profilometer)

  • 권기환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.613-617
    • /
    • 2000
  • This paper descries the effect of the stylus tip size on the measuring error in surface topography measurement. To analyze the distortional effect of an actual surface geometry originating from the finite stylus size, the surface is modeled as a sinusoid and the stylus tip as a circle. the measuring error is defined as the ratio of the standard deviation of a tracing profile and an original profile. It is shown that this measuring error depends on the amplitude and wavelength of an original profile. In this paper, the spectrum analysis is applied to investigate the distortional effect due to the mechanical filtering of the stylus in the frequency domain. and, the cumulative power spectrum is applied to determinate the minimum wavelength limits to be measured with the various stylus tip radius from these results, a new method to select proper stylus tip radius is proposed.

  • PDF

밀링가공에서 절삭력 모델을 이용한 커터 오프셋 판별에 관한 연구 (A Study on the Identification of Cutter Offset by Cutting Force Model in Milling Process)

  • 김영석
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.91-99
    • /
    • 1998
  • This paper presents a methodology for identifying the cutter runout geometry in end milling process. Cutter runout is common but undesirable phenomenon in multi-tooth machining because it introduces variable chip loading to insert which results in a accelerated tool wear. amplification of force variation and hence enlargement vibration amplitude From understanding of chip load change kinematics, the analytical cutting force convolution model was formulated as the angular domain convolution model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the local cutting forces and the chip width density of the cutter. Experimental study is presented to validate the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance and surface quality for industrial application.

  • PDF

STD11의 볼엔드밀링 공정에서의 절삭력 해석 (Cutting force analysis in ball-end milling processes of STD11)

  • 김남규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.52-57
    • /
    • 2000
  • STD11 is one of difficult-to-cut materials and its cutting characteristic data is not built enough. A bad cutting condition of it leads to low productivity of die and mould, so it is necessary to evaluate the machining characteristics of STD11. In this paper, the relations of the geometry of ball-end mill and mechanics of machining with it are studied. The helix angle of ball-end mill varies according to a location of elemental cutting edge in the cutting process are difficult to calculate accurately. To calculate instantaneous cutting forces, it is supposed that the tangential, radial and axial cutting force coefficients are functions of elemental cutting edge location. Elemental cutting forces in the x,y and z direction are calculated by coordinate transformation. The total cutting forces are calculated by integrating the elemental cutting forces of engaged cutting edge elements. This model is verified by slot and side cutting experiments of STD11 workpiece which was heat-treated to HRC45.

  • PDF

마그네트론 전용 해석 프로그램의 개발과 해석 (Development and Analysis of the Magnetron Analysis Program)

  • 이승표;고병갑;하성규
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.123-129
    • /
    • 2009
  • Magnetron is a compartment of microwave oven and it generates the microwave. In this paper, the program HUSAP is developed in order to perform the heat transfer, structure, and fatigue analysis of magnetron. By using it we can make the geometry of magnetron and can solve the governing equations which are formulated by finite element technique. In order to achieve the reliability of HUSAP, we compare it with experiment and commercial software ANSYS. And comparisons of observed results show that agreement is remarkably consistent.

BMT 구동장치의 유한요소해석 및 형상변수 최적화 (Finite Element Analysis and Geometric Parameter Optimization for BMT Driving Assembly)

  • 박영환;곽재섭;엄가정
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.178-183
    • /
    • 2010
  • Base-mounted type(BMT) driving assembly in CNC machine tools is an indispensable part to improve productivity by reducing tool changeover time and to meet the ever-increasing demand of precision machine tools. This study aimed to perform finite element analysis and geometric parameter optimization to improve the efficiency of BMT driving assembly. First, simulations for three-dimensional structural and vibration analysis were performed using ANSYS/Workbench on the initial geometric models of BMT driving assembly. After analyzing stress and deformation concentration zones, several new geometrical models were designed and evaluated by design of experiments and ANSYS/DesignXplorer. Through a series of analysis-evaluation-modification cycles, it was seen that designed models were effective in determining optimal geometry of BMT driving assembly.

가공물 형상에 따른 동적 및 정적 절삭력 성분 분석법 (Dynamic and Static End-milling Force Analysis According to Workpiece Geometry)

  • 양재용;윤문철;김병탁
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.13-19
    • /
    • 2012
  • There are many dynamic properties in measured end-milling force. So, it is difficult to predict the real static property of end-milling force. Also the behavior of end-milling force is very complex to predict with the measured one. To extract the static property from measured force, it must be filtered and its problem is closely related to a de-noising one. Also this paper presents alternative de-noising method of end-milling force using wavelet filter bank, based on the wavelet transform and its inverse one. In this paper, by comparing the measured force and its wavelet filtered one, the fundamental end-milling force property after wavelet transform is well reviewed and analyzed. This result of wavelet filtering with filter bank shows the static force of end-milling which has severe dynamic properties occurring in entry and exit state of edge emersion into the workpiece.

볼 엔드밀을 이용한 금형 구면 가공의 표면품질 향상에 관한 연구 (Surface Quality Improvements on the Spherical Shaped Mold using Ball End Milling)

  • 윤일우;황종대
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.71-76
    • /
    • 2020
  • Various machining methods are being studied to improve the processing quality of the spherical R shape in press die. In this paper, we confirmed that changes in machining quality were associated with changes in cutting direction, path, and cutting angle, which are commonly used in the machining of molds. We obtained a surface roughness graph with each condition change in one specimen using an instrument that measured geometry and surface roughness simultaneously. The results of the study showed that the best surface roughness in the finish cut of the spherical surface was obtained using upward pick feed machining.