• Title/Summary/Keyword: tool clamping force

Search Result 26, Processing Time 0.019 seconds

Magnetic Characteristic of Square Electro-Magnetic Chuck using for Grinding Machine (연삭기용 직각 전자척의 자력특성에 관한 연구)

  • 맹희영;이용구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.215-222
    • /
    • 2003
  • The new square electro-magnetic chuck, which is using for the clamping devices on a grinding machine, is developed in this study to improve the convenience of grinding works. The various kinds of structures are recommended to find the most adequate magnetic characteristics through the analytical approach using finite element methods. The analyzed results are retrofitted to solve the drawbacks of previous models step by step by considering the magnetic fields, strength and distribution of drag force, and thermal deformations of chuck. such as high parallelism and flatness. Finally the best recommended models is designed to satisfy the KS specifications required for the commercial magnetic chuck. The prototype chuck with this dimensions and structures is manufactured. For this final model, the experimental verifications are investigated whether the KS specifications are satisfied.

  • PDF

Magnetic Charateristics of Square Electro-Magnetic Chuck for Grinding Machine (연삭기용 직각 전자척의 자력특성에 관한 연구)

  • Maeng Hee-young;Kim SungHwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.8-15
    • /
    • 2005
  • The new square electro-magnetic chuck, which can be used for the clamping devices on a grinding machine, is developed in this study to improve the convenience of grinding works. The various kinds of structures are recommended to find the most adequate magnetic characteristics through the analytical approach using finite element methods. The analyzed results are retrofitted to solve the drawbacks of previous models step by step by considering the magnetic fields, strength and distribution of drag force, and thermal deformations of chuck such as high parallelism and flatness. Finally the best recommended models is designed to satisfy the KS specifications required fur the commercial magnetic chuck. The prototype chuck with this dimensions and structures is manufactured. For this final model, the experimental verifications are investigated whether the KS specifications are satisfied.

Workpiece-Chucking Device Using Two-Way Shape Memory Alloys: Feasibility Test (양방향성 형상기억합금을 이용한 공작물 척킹장치: 유용성 검증)

  • Shin, Woo-Cheol;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.462-468
    • /
    • 2009
  • In this study, a workpiece-chucking device that generates a chucking force from a shape memory alloy is introduced. This paper first presents train procedure to transform a commercial one-way shape memory alloy into a two-way shape memory alloy, which makes unclamping mechanism of the chucking device simpler than that using the one-way shape memory alloy Second, it describes a conceptual design of the workpiece-chucking device using the two-way type shape memory alloy. Third, it presents a prototype and its chucking characteristics, such as time-response of clamping/unclamping operations and a relationship between temperatures and chucking forces. Finally, it describes a mill-machining test conducted with the prototype. The results confirm that the proposed workpiece-chucking device is feasible for micro machine-tools.

  • PDF

Design and Manufacturing of Narrow-pitched IC Sockets (초소형 IC 소켓 설계 및 제조 기술)

  • Yoon, Seon-Jhin;Kim, Jong-Mi;Kwon, Oh-Keun
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • The design and manufacturing tehcnology of IC sockets beyond 0.3mm pitch were presented. We compared the developed IC socket with the conventional one especially on the core metal-insulation part. Advanced machining techniques were employed to provide high precision. Our wire electrodischarge machining and high speed machining centers were able to maintain the micro-scale precision. We performed an injection molding analysis using a commercial analysis tool to predict the performance of the developed IC socket. We found that the solidification of the plastic resin and the high level of the clamping force are responsible for the defects such as incomplete filling and short shot. From these results, we modified the IC socket and successfully remove the defects. We were also able to find out that the new design socket needs less maintenance cost.

Modeling of EMB (Electro Mechanical Brake) to Emulate Gearbox Fault and Control (기어의 고장을 구현하기 위한 EMB(Electro Mechanical Brake) 모델링 및 제어)

  • Choe, Byung-Do;Hwang, Woo-Hyun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-38
    • /
    • 2012
  • EMB is considered as the next generation braking mechanism because it has simple structure and is environment friendly. However, as other brake mechanisms, EMB should be operated reliably for any operating conditions. EMB should be designed with fail-safe and fault-tolerant control concepts which require robust fault detection algorithms for various possible faults. In the design of fault detection algorithms, it is very difficult to construct faulty conditions in real EMB and thus, simulations are often used to emulate the faulty conditions. In this paper, a simulation tool is developed using the commercial software to emulate gear faults in the EMB mechanism. A backlash compensation algorithm is introduced based on contact point detection because screw backlash causes a delay in clamping force response time.

Robust Design of Gate Locations and Process Parameters for Minimizing Injection Pressure of an Automotive Dashboard (자동차 대시보드의 사출압력 최소화를 위한 게이트 위치와 공정조건의 강건설계)

  • Kim, Kwang-Ho;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.73-81
    • /
    • 2014
  • In this paper, multiple gate locations and process conditions under concern are automatically optimized by considering robustness to minimize the injection pressure required to mold an automotive dashboard. Computer simulation-based experiments using orthogonal arrays(OA) and a design-range reduction algorithm are consolidated into an iterative search scheme, which is then used as a tool for the optimization process. The robustness of a design is evaluated using an OA-based simulation of process fluctuations due to noise as well as the signal-to-noise ratio. The optimal design solution for the automotive dashboard shows that the robustness of the injection pressure is significantly improved when compared to the initial design. As a result, both the die clamping force and the pressure distribution in the part cavity are also much improved in terms of their robustness.