• Title/Summary/Keyword: ton

Search Result 2,636, Processing Time 0.032 seconds

A Study on Estimation of Air Pollutants Emission from Agricultural Waste Burning (농업잔재물 노천소각에 의한 대기오염물질 배출량 산출에 관한 연구)

  • Kim, Dong Young;Choi, Min-Ae;Han, Yong-Hee;Park, Sung-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.167-175
    • /
    • 2016
  • In this study, we estimate air pollutants emission from agricultural waste burning. We investigated activities related to agricultural waste burning such as crop burning rates, location, and time by region. The average crop burning rates per square meter farmland of fruits, pulses, barleys, cereals, vegetables, and special crops were $273.1g/m^2$, $105.7g/m^2$, $7.4g/m^2$, $121.0g/m^2$, $290.7g/m^2$, and $392.9g/m^2$, respectively. We estimated air pollutants emissions with pre-developed emission factors. The estimated air pollutant emission of agricultural biomass burning were CO 148,028 ton/year, $NO_x$ 5,220 ton/year, $SO_x$ 11 ton/year, VOC 59,767 ton/year, TSP 21,548 ton/year, $PM_{10}$ 8,909 ton/year, $PM_{2.5}$ 7,405 ton/year, and $NH_3$ 5 ton/year. When these results compared with the entire emissions of national inventory (CAPSS), CO, VOC, $PM_{10}$ account for about 17.8%, 6.2%, 6.7% of the total, respectively.

Analysis of Environmental Change after Planting for Prevention of Stone Hazarding Guizhou, China (중국 귀주성 석막화 방지 조림 후 환경변화 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.180-188
    • /
    • 2010
  • This study was carried out to evaluate the analysis of environmental change (forest resources and soil water conservation by land types) after planting for prevention of between 2003 and 2006 from the stone hazarding areas in Guizhou province, China. Mean diameter growth of the trees was highest for Melia azedarach, followed by Robinia pseudoacacia, Lonicera fulvotomentosa, Choerospondias axillaris, Cupressus duclouxiana, and Eucommia uimoides Oliv. Mean height growth of the trees was greatest for R. pseudoacacia, followed by Ilex kudincha, M. azedarach, C. duclouxiana, C. axillaris, E. uimoides Oliv, Zanthoxylum bungeanum, and L. fulvotomentosa. Tree biomass was greater at the afforestation sites by 1.22-1.71 ton/ha compared to that of severely eroded mountain areas. The capacities of soil water conservation by land types were 2,790 ton/ha at latent rock desertification farmland, 2,655 ton/ha at rock desertification farmland, 1,680 ton/ha at dolomite sandstone hilly country, 1,650 ton/ha at halfstony hilly country, and 1,590 ton/ha at karst physiognomy site. Soil erosion was estimated to be 1,285 ton/$km^2$ which had been 2,178 ton/$km^2$ before afforestation. Also, we should be continuative manage after planting for prevention of the stone hazarding areas in Guizhou province, China.

An Estimation of Greenhouse Gases (GHGs) Emissions from Energy Sector in Changwon City and Scenario Analysis Based on the Application of Carbon Neutral by 2050 in Korea (2050 탄소중립 시나리오를 적용한 창원시 에너지부문 온실가스 배출산정 및 시나리오 분석 )

  • Ha-Neul Kim;Jae-Hyung Jung
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.419-428
    • /
    • 2023
  • This study estimates the greenhouse gases (GHGs) emissions from energy sector of Changwon city from 2012 to 2020 and scenario analysis of GHGs reductions pathways in the context of the goal of 2030 NDC and 2050 carbon neutral scenario in Korea. As a result, the GHG emissions as a reference year of carbon neutral in 2018 were estimated as 8,872,641 tonCO2eq accounting for 3,851,786 tonCO2eq (43.6%) of direct source (scope 1) and 4,975,855 tonCO2eq (56.4%) of indirect source (scope 2). Especially, among indirect sources as purchased electricity, manufacturing sector emitted the largest GHG accounting for 33.0%(2,915 thousands tonCO2eq) of the total emissions from all energy sectors, scenario analysis of GHG reductions potential from the energy was analyzed 8,473,614 tonCO2eq and the residual emissions were 354,027 tonCO2eq. Purchased electricity and industry sector reducted the largest GHG accounting for 58.7%(4,976 thousands tonCO2eq) and 42.1%(3,565 thousands tonCO2eq) of the total emissions from all energy sectors, respectively.

GHG-AP Integrated Emission Inventories and Per Unit Emission in Biomass Burning Sector of Seoul (서울시 생물성 연소부문 온실가스-대기오염 통합 인벤토리 및 배출원단위분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • Biomass burning is known to be one of the main sectors emitting greenhouse gases as well as air pollutants. Unfortunately, the inventory of biomass burning sector has not been established well. We estimated greenhouse gas (GHG) and air pollution (AP) integrated emissions from biomass burning sector in Seoul during year 2010. The data of GHG and AP emissions from biomass burning, classified into open burning, residential fireplace and wood stove, meat cooking, fires, and cremation, were obtained from Statistics Korea and Seoul City. Estimation methodologies and emission factors were gathered from reports and published literatures. Estimated GHG and AP integrated emissions during year 2010 were $3,867tonCO_{2eq}$, and 2,320 tonAP, respectively. Major sources of GHG were forest fires ($1,533tonCO_{2eq}$) and waste open burning ($1,466tonCO_{2eq}$), while those of AP were meat cooking (1,240 tonAP) and fire incidence (907 tonAP). Total emissions by administrative district in Seoul, representing similar patterns in both GHG and AP, indicated that Seocho-gu and Gangseo-gu were the largest emitters whereas Jung-gu was the smallest emitter, ranged in $2{\sim}165tonCO_{2eq}$ and 0.1~8.31 tonAP. GHG emissions per $km^2$ showed different results from total emissions in that Gwanak-gu, Jungnang-gu, Gangdong-gu and Seodaemun-gu were the largest emitters, while Seocho-gu and Gangseo-gu were near-averaged emission districts, ranged in $0.2{\sim}21tonCO_{2eq}/km^2$. However, AP emissions per $km^2$ revealed relatively minor differences among districts, ranged in $2.3{\sim}6.1tonAP/km^2$.

Changes of the Amount of Forest Floor Organic Matter in Deciduous Forest along the Altitudinal Gradient (낙엽활엽수림에 있어서 표고 경도에 따른 임상유기물량의 변화)

  • Yi, Myong-Jong
    • Journal of Forest and Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.72-80
    • /
    • 1995
  • Altitudinal effects on the accumulation of O layer were examined for deciduous broad-leaved forests in the experimental forest of Kangwon National University. There found a marked increased towards the higher altitudes in the thickness of O layer. These trends could be observed conspicuously on the F2 and H layers. The relation between thickness (X, cm) and dry weight (Y, $kg/m^2$) of O layer was approximated by linear regression equations;Y($kg/m^2$ = aX(cm). The values of coefficient "a" for the F2, H and F2+H layers were 0.43, 0.61 and 0.53, respectively. Bulk densities of the accumulated organic matter estimated nearly to be $45g/dm^2$ in F2 layer, $60g/dm^2$ in H layer and $55g/dm^2$ in F2+H layer. The amount of O layer ranged from 13ton/ha for the forest at 280m in altitude to 41ton/ha for the upper forest at 710m in altitude. Among these total amount of the O layer, F1, F2 and H layer occupied to be 5~10ton/ha, 5~11ton/ha and 13~40ton/ha, respectively.

  • PDF

Productive Structure and Net Production of Quercus mongolica forest in Mt. Taehwa (Kwangju, Kyonggi-do) (경기도 광주시 태화산 신갈나무림의 생산구조와 생산성)

  • 손석용;권기철;정택상
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This study was to investigate the productivity of 30-year-old Quercus mongolica forest in the Experimental Forest of Seoul National University located in Mt. Taehwa, Kyonggi-do, Korea. Eight sample trees were selected and cut off. Stem, branches and leaves were weighed respectively with the stratified clipping method, and analyzed for productive struts lure. The allometric regression equations between dry weight of each component(stem, branches, and needles) and D$^2$H were obtained. The results obtained are summarized as follows; (1) Photosynthetic layer of Quercus mongolica was shown at about 4m in height, and maximum needle amount of crown at 10m in height. (2) The total biomass of aboveground was 67.886ton/ha(75.5% from stem, 19.4% from branches and 5.1% from needles). (3) Annual net production of aboveground was 12.76ton/ha/yr, and the ratios of stem, branches and needles to that of aboveground, 44.1%, 28.7% and 27.2%, respectively.

  • PDF

The Status of Domestic Hydrogen Production, Consumption, and Distribution (국내 수소 생산, 소비 및 유통 현황)

  • Gim, Bong-Jin;Kim, Jong-Wook;Choi, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.391-399
    • /
    • 2005
  • This paper deals with the survey of domestic hydrogen production, consumption, and distribution. The amount of domestic hydrogen production and consumption has not been identified, and we survey the amount of domestic hydrogen production and consumption by industries. The hydrogen production industries are classified into the oil industry, the petrochemical industry, the chemical industry, and the other industry. In 2004, the amount of domestic hydrogen production was 972,601 ton, which corresponded to 1.9% of the global hydrogen production. The oil industry produced 635,683 ton(65.4%), the petrochemical industry produced 241,970 ton(24.9%), the chemical industry produced 66,250 ton(6.8%), the other industry produced 28,698 ton(2.9%). The hydrogen consumptions of corresponding industries were close to the hydrogen productions of industries except that of the other industry. Most hydrogen was used as non-energy for raw materials and hydrogen additions to the process. Only 122,743 ton(12.6%) of domestic hydrogen was used as energy for heating boilers. In 2004, 47,948 ton of domestic hydrogen was distributed. The market shares of pipeline, tube trailers and cylinders were 84.4% and 15.6%, respectively. The purity of 31,848 ton(66.4%) of the distributed hydrogen was 99.99%, and 16,100 ton(33.6%) was greater than or equal to 99.999%. Besides domestic hydrogen, we also identify the byproduct gases which contain hydrogen. The iron industry produces COG( coke oven gas), BFG(blast furnace gas), and LDG(Lintz Donawitz converter gas) that contain hydrogen. In 2004, byproduct gases of the iron industry contained 355,000 ton of hydrogen.

Estimation of Carbon Storage for Pinus rigida Stands in Muju (무주지역 리기다소나무 임분에 대한 탄소저장량 평가)

  • Seo, Yeon Ok;Jung, Sung Cheol;Lee, Young Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.3
    • /
    • pp.399-405
    • /
    • 2016
  • This study aimed to determine the total amount of carbon stored in the aboveground, belowground tree biomass, dead trees, and organic matter in the forest floor and soil of the 36-year-old Pinus rigida stands in Muju. A total of three plots were selected to measure the carbon stored in live trees, dead trees, forest floor, and soil. Results showed that the carbon stocks of P. rigida stands amounted to 51.0 ton C/ha in aboveground biomass and 29.6 ton C/ha in belowground biomass. The distribution ratios of carbon stocks were as follows: 41.0% in stem wood, 36.8% in roots, 12.8% in branches, 6.0% in stem bark and 3.4% in foliage. The carbon stocks in dead tree amounted to 0.65 ton C/ha while it was 6.40 ton C/ha in organic matter in forest floor. The total amount of carbon stocks found in soil was 51.62 ton C/ha: 20.27 ton C/ha at 0~10 cm depth, 12.83 ton C/ha at 10~20 cm depth, 12.27 ton C/ha at 20~30 cm depth, and 6.24 ton C/ha at 30~50 cm depth. It was also observed that, as the soil depth increased, the soil carbon stocks tended to decrease. Results showed that the total amount of carbon stocks of P. rigida stands in Muju was 139.27 ton C/ha; the highest portion of the cumulative carbon stocks was found to be in soil at 37.1%, followed by the aboveground biomass with 36.6%, belowground biomass with 21.3%, forest floor with 4.6 % and dead trees with 0.5 %. This study is expected to provide forest managers accurate estimates of carbon stored in the habitat of P. rigida stands in Muju.

Effects of Liquid Pig Manure Application Level on Growth Characteristics, Yield, and Feed Value of Whole Crop Barley at Reclaimed Tidal Land in Southwestern Korea

  • Shin, Pyeong;Cho, Kwang-Min;Back, Nam-Hyun;Yang, Chang-Hyu;Lee, Geon-Hwi;Park, Ki-Hun;Lee, Dong-Sung;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.579-585
    • /
    • 2014
  • This study was conducted to investigate liquid pig manure (LPM) application rates on the growth characteristics, yield, and feed value of whole crop barley in Yeongsangang and Saemangeum reclaimed tidal land. Electronic conductivity (EC), organic matter (OM), and available phosphate (Av. $P_2O_5$) increased in chemical properties of Yeongsangang and Saemangeum soil as raising LPM application level. As increasing LPM application level, exchangeable $Na^+$ significantly increased in Yeongsangang, while exchangeable $K^+$ significantly increased in Saemangeum. Plant height was not significantly different from LPM 100% to LPM 200% in Yeongsangang and in Saemangeum. Dry matter yield of whole crop barley increased steadily, but crop yield of LPM 200% in Yeongsangang ($10.5ton\;ha^{-1}$) was as much as that of LPM 150% ($10.0ton\;ha^{-1}$). Yield of LPM 200% ($11.2ton\;ha^{-1}$) in Saemangeum was similar to that of LPM 150% ($10.5ton\;ha^{-1}$). Crude protein (CP) increased depending on LPM application level, but total digestible nutrients (TDN) increased regardless of LPM application level. LPM 200% was the highest in TDN yield (Yeongsangang: $7.4ton\;ha^{-1}$, Saemangeum: $6.9ton\;ha^{-1}$), but there was no statistical difference between LPM 150% (Yeongsangang: $6.9ton\;ha^{-1}$, Saemangeum: $6.6ton\;ha^{-1}$) and LPM 200%. From the results described above, optimum rate of LPM for cultivating whole crop barley is considered 100% in Yeongsangang reclaimed tidal land and 150% in Saemangeum reclaimed tidal land, showing that the effect of LPM application is better in Segmentation than that in Yeongsangang for yield of whole crop barley.

Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park (월악산 소나무림의 유기탄소 분포 및 수지)

  • Lee, Ji-Young;Kim, Deok-Ki;Won, Ho-Yeon;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • Organic carbon distribution and carbon budget of a Pinus densiflora forest in the Songgye valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from May 2011 through April 2012. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above and below ground biomass was 52.25 and 14.52 ton C $ha^{-1}$. Amount of organic carbon in annual litterfall was 4.71 ton C $ha^{-1}$. Amount of organic carbon within 50cm soil depth was 58.56 ton C $ha^{-1}$ 50cm-$depth^{-1}$. Total amount of organic carbon in this Pinus densiflora forest was estimated to 130.04 ton C $ha^{-1}$. Amount of organic carbon in tree layer, shrub and herb layer was 4.12, 0.10 and 0.04 ton C $ha^{-1}yr^{-1}$ and total amount of organic carbon was 4.26 ton C $ha^{-1}yr^{-1}$. Amount of organic carbon returned to the forest via litterfall was 1.62 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through soil respiration was 6.25 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.19 and 3.06 ton C $ha^{-1}yr^{-1}$. The amount of organic carbon absorbed from the atmosphere of this Pinus densiflora forest was 1.07 ton C $ha^{-1}yr^{-1}$ when it was estimated from the difference between Net Primary Production and microbial respiration.