• 제목/요약/키워드: tomographic images

검색결과 261건 처리시간 0.022초

Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies

  • Choi, Se Hwan;Choi, Hyun Joon;Min, Chul Hee;Chung, Young Hyun;Ahn, Jae Joon
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.888-893
    • /
    • 2021
  • The International Atomic Energy Agency has developed a tomographic imaging system for accomplishing the total fuel rod-by-rod verification time of fuel assemblies within the order of 1-2 h, however, there are still limitations for some fuel types. The aim of this study is to develop a deep learning-based denoising process resulting in increasing the tomographic image acquisition speed of fuel assembly compared to the conventional techniques. Convolutional AutoEncoder (CAE) was employed for denoising the low-quality images reconstructed by filtered back-projection (FBP) algorithm. The image data set was constructed by the Monte Carlo method with the FBP and ground truth (GT) images for 511 patterns of missing fuel rods. The de-noising performance of the CAE model was evaluated by comparing the pixel-by-pixel subtracted images between the GT and FBP images and the GT and CAE images; the average differences of the pixel values for the sample image 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the FBP images, and 0.5%, 1.4% and 1.9% for the predicted image, respectively. Even for the FBP images not discriminable the source patterns, the CAE model could successfully estimate the patterns similarly with the GT image.

Using Hierarchical Performance Modeling to Determine Bottleneck in Pattern Recognition in a Radar System

  • Alsheikhy, Ahmed;Almutiry, Muhannad
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.292-302
    • /
    • 2022
  • The radar tomographic imaging is based on the Radar Cross-Section "RCS" of the materials of a shape under examination and investigation. The RCS varies as the conductivity and permittivity of a target, where the target has a different material profile than other background objects in a scene. In this research paper, we use Hierarchical Performance Modeling "HPM" and a framework developed earlier to determine/spot bottleneck(s) for pattern recognition of materials using a combination of the Single Layer Perceptron (SLP) technique and tomographic images in radar systems. HPM provides mathematical equations which create Objective Functions "OFs" to find an average performance metric such as throughput or response time. Herein, response time is used as the performance metric and during the estimation of it, bottlenecks are found with the help of OFs. The obtained results indicate that processing images consumes around 90% of the execution time.

Ameloblastoma with dystrophic calcification: A case report with 3-dimensional cone-beam computed tomographic images of calcification

  • Kang, Byung Cheol;Lee, Jae Seo;Yoon, Suk Ja;Kim, Young
    • Imaging Science in Dentistry
    • /
    • 제50권4호
    • /
    • pp.373-376
    • /
    • 2020
  • This report presents a rare case of ameloblastoma with histopathologic and radiographic calcification, including 3-dimensional cone-beam computed tomographic (CBCT) images. A 22-year-old woman had hard swelling on the right mandible. Panoramic and CBCT images showed multilocular radiolucencies with internal calcification foci in the right mandible. Three-dimensional images clearly showed varying-sized radiopacities within the lesion from various angles. A histopathologic examination showed central squamous differentiation and more densely packed peripheral palisading ameloblastic cells. Many areas of keratin pearls and calcifications were also seen. Four previous reports have described 5 cases of ameloblastoma showing histopathologic calcification. This might be the first report to present the calcification of ameloblastoma on panoramic and CBCT images, especially on 3-dimensional images.

단층촬영 각도의 변화가 하악과두의 골 증식성 병소의 인식에 미치는 영향 (The Effect of Tomographic Angles on the Osteophytic Lesion Detectability of the Mandibular Condyle)

  • 한상선;김기덕
    • 치과방사선
    • /
    • 제29권1호
    • /
    • pp.309-325
    • /
    • 1999
  • Purpose: To find out the effects that different tomographic angles have on the osteophytic lesion detectability of condyle head by comparison the individualized lateral tomographic image with the various tomographic angled images using SCANORA/sup (R)/. Materials & Methods: This study is performed to simulate osteophytic lesions by a series of dentin chips placed at six locations on condyle head. The control angle is 15° and from this angle. tomographic angle were varied with -10°, +10°, +20°. All the images with each sized dentin chip were scored by three dental radiologists with the use of confidence levels for presence or absence of the lesion, each examiner viewed one of the images twice. A rating scale from 0 to 2 (0, lesion definitely not present; 1. uncertain if lesion is present; 2, lesion definitely present). Responses were assessed by Tukey' s multiple comparison method and kappa value. Results: 1. The lesion size of 0.3 mm could not be detected in all the tomographic angles. As the size of the lesion increased the average value of lesion detectability also increased. 2. In the lesion sizes of 0.7 mm there was statistically significant difference between the 15° control angle and the altered tomographic angles (p<0.05). In 1.0 mm lesion there was no significant difference in the ±10° altered angles (p >0.05). but there was significant difference in the altered angle (p<0.05). In the lesion sizes of 0.3 mm and 2.0 mm there was no significant difference between the 15° control angle and all the altered angles (p >0.05). 3. In the anteromedial. anterosuperior, anterolateral area there was no significant difference between the 15° control angle and the ±10° altered angle (p >0.05), but in the comparison with the +20° altered angle there was significant difference (p<0.05). Conclusion: When imaging the lateral tomography of the temporomandibular joint used by SCANORA/sup (R)/, it can be considered that in the osteophytic lesion size of 2 mm and above, the tomographic angle difference within +20° to the horizontal angle of the condyle. has little effect on the lesion detectability. And in the lesion size of 1 mm, the altered angle within ±10° also has little effect on the lesion detectability.

  • PDF

STAM 토모그라픽 영상의 분해능 해석 (An Analysis on the Resolution of Tomographic Images in STAM)

  • 황기환;고대식;전계석
    • 한국음향학회지
    • /
    • 제16권1호
    • /
    • pp.33-38
    • /
    • 1997
  • 본 논문에서는 음향-광 효과를 이용한 STAM 시스템으로부터 얻을 수 있는 토모그라픽 영상의 분해능을 해석하였다. 이를 위하여 BFP 토모그라픽 복원 알고리즘을 이용하여 초음파변환기 회전장치와 시료 회전장치에 대한 측방향과 축방향 분해능을 해석하였다. Matlab을 이용한 분석결과, 축방향 분해능은 두 회전장치 모두 약 1.5 파장정도로 좋은 분해능을 나타내었다. 측방향 분해능은 시료 회전장치인 경우 x와 yqkdgid에서 0.53 파장의 동일한 분해능을 보였으며 초음파변환기 회전장치인 경우에는 x와 yqkdgid에서 각각 0.56 및 0.70 파장의 분해능을 나타내었다. 결과적으로 STAM 시스템은 시료회전장치를 사용할 때 더 좋은 분해능을 얻을 수 있음을 보였다.

  • PDF

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

개선된 FBP 토모그라픽 알고리즘에서 분해능의 결정 (The Determination of Resolution on the Improved FBP Tomographic Algorithm)

  • 구길모;황기환;박치승;고덕영
    • 대한전자공학회논문지TE
    • /
    • 제42권1호
    • /
    • pp.21-28
    • /
    • 2005
  • 본 논문은 토모그라픽 영상시스템에 적합한 FBP 토모그라픽 영상복원 알고리즘의 분해능에 관하여 연구하였다. 고정좌표계를 이용하는 개선된 FBP 토모그라픽 영상복원 알고리즘으로부터 분해능을 분석할 수 있는 모호함수를 유도하였고, 이를 이용한 모의실험을 통하여 얻은 진폭분포로부터 측방향 및 축방향 분해능을 정량적으로 결정하였다. 개선된 FBP 토모그라픽 영상복원 알고리즘을 통해 기존의 SAM(Scanning Acoustic Microscope)시스템으로부터 얻을 수 있는 3dB와 6dB 축방향 분해능에 대해서도 각각 0.70 파장과 0.96 파장으로 SAM 영상의 3dB 축방향 분해능인 7 파장에 비하여 매우 개선된 분해능을 얻을 수 있음을 확인하였다. 평면 입사파의 회절 토모그라픽 영상복원을 위한 개선된 FBP 토모그라픽 영상복원 알고리즘은 미세하고 복잡한 다층 박막구조를 갖는 시료에 대하여 좋은 분해능을 갖는 토모그라픽 영상시스템을 개발하는데 유용하게 활용할 수 있도록 하였다.

인공치아 이식부위 분석을 위한 다기능 영상체계의 실험적 검사 (AN EXPERIMENTAL EXAMINATION OF MULTIMODAL IMAGING SYSTEM FOR IMPLANT SITE ASSESSMENT)

  • 박창서;김기덕
    • 치과방사선
    • /
    • 제28권1호
    • /
    • pp.7-16
    • /
    • 1998
  • The Scanora/sup (R)/ X-ray unit uses the principles of narrow beam radiography and spiral tomography. Starting with a panoramic overview as a scout image. multiple tomographic projections could be selected. This study evaluated the accuracy of spiral tomography in comparison to routine panoramic radiography for dental implant treatment planning. An experimental study was performed on a cadaver mandible to assess the accuracy of panoramic radiography and spiral tomography film images for measurement of metallic spheres. After radiographic images of the metallic spheres on the surgical stent were measured and corrected for a fixed magnification of radiographic images. following results were obtained. 1. In the optimal position of the mandible. the minimal horizontal and vertical distortion was evident in the panoramic radiography images. The mean horizontal and vertical magnification error in anterior sites was 5.25% and 0.75%. respectively. The mean horizontal and vertical magnification error in posterior sites was 0.50% and 1.50%. respectively. 2. In the displaced forward or in an eccentric position of the mandible. the magnification error of the panoramic radiography images increased significantly over the optimal position. Overall, the mean horizontal magnification error of the anterior site in the different positions changed dramatically within a range of -17.25% to 39.00%, compared to the posterior range of -5.25% to 8.50%. However, the mean vertical magnification error stayed with the range of 0.5% to 3.75% for all the mandibular positions. 3. The magnification effects in the tomographic scans were nearly identical for the anterior and posterior with a range of 2.00% to 5.75% in the horizontal and 4.50% to 5.50% in the vertical dimension, respectively. 4. A statistically significant difference between the anterior and posterior measurements was found in the horizontal measurements of the panoramic radiography images of the displaced forward and backward position of the mandible(P<0.05). Also a significant difference between the optimal panoramic and tomographic projections was found only in the vertical measurement(P<0.05).

  • PDF

단층촬영상에서 계획된 임플랜트 매식 각도 및 위치에 대한 스텐트 핀의 상대적 각도 및 위치에 대한 평가 (The angulation and the position change of the planned implant after tomographic imaging)

  • 강병철
    • Imaging Science in Dentistry
    • /
    • 제37권3호
    • /
    • pp.127-131
    • /
    • 2007
  • Purpose: To measure the differences of the splint pin angulation and the position of the planned implant site after conventional tomographic analysis. Materials and Methods: The angulation and the location of the metal splint pin retained in acrylic stent were compared with the corrected angulation and the location of the implant fixture on the 331 tomographic images. Results: The stent pins were located buccal in 40%, lingual in 10% to the corrected implant site after analysis of the conventional tomographic image. The angle and the location of the maxillary splint pin were mainly directed buccal on incisor and canine regions. The angle and the location of the splint pins in premolar and molar regions needed less corrections in both maxilla and mandible. Conclusions: This study demonstrated that the use of tomographs was essential for successful dental implant planning.

  • PDF

3차원 입체영상 CT의 구강외과 영역에서의 활용 (THREE-DIMENSIONAL COMPUTED TOMOGRAPHY FOR EVALUATION AND PLANNING OF ORAL AND MAXILLOFACIAL SURGERY ; REPORT OF CASES)

  • 김진;노홍섭
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제19권4호
    • /
    • pp.343-350
    • /
    • 1997
  • Diagnosis of maxillofacial lesions is very difficult. Recent developments in computed tomography enable the production of three dimnesional images of complex anatomical structures from a series of conventional computed tomographic sections. Methods of three-dimensional analysis of computed tomographic images have recently been described. Mostly, reports have concentrated on applications relative to congenital deformities. In this report, one method of three dimensional reformatting is reviwes. Images formed by this method have solid surface appearance and can be color enhanced and manipulated to isolate anatomic structures of interest. The program allows tissue densitis, volumes, and distances. This report emphasizes maxillofacial applications other than those previously reported in the surgical and radiological literature.

  • PDF