• Title/Summary/Keyword: tomographic images

Search Result 259, Processing Time 0.024 seconds

Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies

  • Choi, Se Hwan;Choi, Hyun Joon;Min, Chul Hee;Chung, Young Hyun;Ahn, Jae Joon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.888-893
    • /
    • 2021
  • The International Atomic Energy Agency has developed a tomographic imaging system for accomplishing the total fuel rod-by-rod verification time of fuel assemblies within the order of 1-2 h, however, there are still limitations for some fuel types. The aim of this study is to develop a deep learning-based denoising process resulting in increasing the tomographic image acquisition speed of fuel assembly compared to the conventional techniques. Convolutional AutoEncoder (CAE) was employed for denoising the low-quality images reconstructed by filtered back-projection (FBP) algorithm. The image data set was constructed by the Monte Carlo method with the FBP and ground truth (GT) images for 511 patterns of missing fuel rods. The de-noising performance of the CAE model was evaluated by comparing the pixel-by-pixel subtracted images between the GT and FBP images and the GT and CAE images; the average differences of the pixel values for the sample image 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the FBP images, and 0.5%, 1.4% and 1.9% for the predicted image, respectively. Even for the FBP images not discriminable the source patterns, the CAE model could successfully estimate the patterns similarly with the GT image.

Using Hierarchical Performance Modeling to Determine Bottleneck in Pattern Recognition in a Radar System

  • Alsheikhy, Ahmed;Almutiry, Muhannad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.292-302
    • /
    • 2022
  • The radar tomographic imaging is based on the Radar Cross-Section "RCS" of the materials of a shape under examination and investigation. The RCS varies as the conductivity and permittivity of a target, where the target has a different material profile than other background objects in a scene. In this research paper, we use Hierarchical Performance Modeling "HPM" and a framework developed earlier to determine/spot bottleneck(s) for pattern recognition of materials using a combination of the Single Layer Perceptron (SLP) technique and tomographic images in radar systems. HPM provides mathematical equations which create Objective Functions "OFs" to find an average performance metric such as throughput or response time. Herein, response time is used as the performance metric and during the estimation of it, bottlenecks are found with the help of OFs. The obtained results indicate that processing images consumes around 90% of the execution time.

Ameloblastoma with dystrophic calcification: A case report with 3-dimensional cone-beam computed tomographic images of calcification

  • Kang, Byung Cheol;Lee, Jae Seo;Yoon, Suk Ja;Kim, Young
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.373-376
    • /
    • 2020
  • This report presents a rare case of ameloblastoma with histopathologic and radiographic calcification, including 3-dimensional cone-beam computed tomographic (CBCT) images. A 22-year-old woman had hard swelling on the right mandible. Panoramic and CBCT images showed multilocular radiolucencies with internal calcification foci in the right mandible. Three-dimensional images clearly showed varying-sized radiopacities within the lesion from various angles. A histopathologic examination showed central squamous differentiation and more densely packed peripheral palisading ameloblastic cells. Many areas of keratin pearls and calcifications were also seen. Four previous reports have described 5 cases of ameloblastoma showing histopathologic calcification. This might be the first report to present the calcification of ameloblastoma on panoramic and CBCT images, especially on 3-dimensional images.

The Effect of Tomographic Angles on the Osteophytic Lesion Detectability of the Mandibular Condyle (단층촬영 각도의 변화가 하악과두의 골 증식성 병소의 인식에 미치는 영향)

  • Han Sang-Sun;Kim Kee-Deog
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.309-325
    • /
    • 1999
  • Purpose: To find out the effects that different tomographic angles have on the osteophytic lesion detectability of condyle head by comparison the individualized lateral tomographic image with the various tomographic angled images using SCANORA/sup (R)/. Materials & Methods: This study is performed to simulate osteophytic lesions by a series of dentin chips placed at six locations on condyle head. The control angle is 15° and from this angle. tomographic angle were varied with -10°, +10°, +20°. All the images with each sized dentin chip were scored by three dental radiologists with the use of confidence levels for presence or absence of the lesion, each examiner viewed one of the images twice. A rating scale from 0 to 2 (0, lesion definitely not present; 1. uncertain if lesion is present; 2, lesion definitely present). Responses were assessed by Tukey' s multiple comparison method and kappa value. Results: 1. The lesion size of 0.3 mm could not be detected in all the tomographic angles. As the size of the lesion increased the average value of lesion detectability also increased. 2. In the lesion sizes of 0.7 mm there was statistically significant difference between the 15° control angle and the altered tomographic angles (p<0.05). In 1.0 mm lesion there was no significant difference in the ±10° altered angles (p >0.05). but there was significant difference in the altered angle (p<0.05). In the lesion sizes of 0.3 mm and 2.0 mm there was no significant difference between the 15° control angle and all the altered angles (p >0.05). 3. In the anteromedial. anterosuperior, anterolateral area there was no significant difference between the 15° control angle and the ±10° altered angle (p >0.05), but in the comparison with the +20° altered angle there was significant difference (p<0.05). Conclusion: When imaging the lateral tomography of the temporomandibular joint used by SCANORA/sup (R)/, it can be considered that in the osteophytic lesion size of 2 mm and above, the tomographic angle difference within +20° to the horizontal angle of the condyle. has little effect on the lesion detectability. And in the lesion size of 1 mm, the altered angle within ±10° also has little effect on the lesion detectability.

  • PDF

An Analysis on the Resolution of Tomographic Images in STAM (STAM 토모그라픽 영상의 분해능 해석)

  • Hwang, Ki-Hwan;Ko, Dae-Sik;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • In this paper, we analyzed the resolution of tomographic images which can be obtained with Scanning Tomographic Acoustic Microscope(STAM) utilizing the acousto-optic effect. To realize this, lateral and depth resolutions of both ultrasonic transducer and specimen rotating device are obtained by using BFP tomographic reconstruction algorithm. Simulation results show that both rotating devices have a good depth resolution of $1.5{\lambda}$. For the lateral resolution, the specimen rotating device produces $0.53{\lambda}$ in the x and y directions and the transducer rotating device produces $0.56{\lambda}$ and $0.70{\lambda}$ in the x and y directions respectively. These results imply that the specimen rotating device is more suitable for STAM system construction.

  • PDF

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

The Determination of Resolution on the Improved FBP Tomographic Algorithm (개선된 FBP 토모그라픽 알고리즘에서 분해능의 결정)

  • Koo, Kil-Mo;Hwang, Ki-Hwan;Park, Chi-Seong;Ko, Duck-Young
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • In this paper, we studied resolution to the FBP(Filtered Back-Propagation) tomographic image reconstruction algorithms. In order to analyze the resolution to the tomographic images, we derived ambiguity function to this algorithm which can be reconstructed from the improved FBP image reconstruction algorithm by using fixed coordinate system practically. Through simulation using this function, we determined the lateral and depth resolution quantitively and then analyzed respectively. Simulation results show that the lateral and depth resolution to the improved FBP image reconstruction algerian was determined $0.27\lambda\;and\;0.70\lambda$ at the 3dB, and also $0.89\lambda\;and\;0.96\lambda$ at the 6dB respectively. This results proved that improved FBP reconstruction algorithms for diffraction tomography of incident planar wave is useful to developed the tomographic image system, analyze the resolution to the tomographic images, we derived ambiguity function to this algerian which can be reconstructed from the improved FBP image reconstruction algorithm by using fixed coordinate system.

AN EXPERIMENTAL EXAMINATION OF MULTIMODAL IMAGING SYSTEM FOR IMPLANT SITE ASSESSMENT (인공치아 이식부위 분석을 위한 다기능 영상체계의 실험적 검사)

  • Park Chang-Seo;Kim Kee-Deog
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.7-16
    • /
    • 1998
  • The Scanora/sup (R)/ X-ray unit uses the principles of narrow beam radiography and spiral tomography. Starting with a panoramic overview as a scout image. multiple tomographic projections could be selected. This study evaluated the accuracy of spiral tomography in comparison to routine panoramic radiography for dental implant treatment planning. An experimental study was performed on a cadaver mandible to assess the accuracy of panoramic radiography and spiral tomography film images for measurement of metallic spheres. After radiographic images of the metallic spheres on the surgical stent were measured and corrected for a fixed magnification of radiographic images. following results were obtained. 1. In the optimal position of the mandible. the minimal horizontal and vertical distortion was evident in the panoramic radiography images. The mean horizontal and vertical magnification error in anterior sites was 5.25% and 0.75%. respectively. The mean horizontal and vertical magnification error in posterior sites was 0.50% and 1.50%. respectively. 2. In the displaced forward or in an eccentric position of the mandible. the magnification error of the panoramic radiography images increased significantly over the optimal position. Overall, the mean horizontal magnification error of the anterior site in the different positions changed dramatically within a range of -17.25% to 39.00%, compared to the posterior range of -5.25% to 8.50%. However, the mean vertical magnification error stayed with the range of 0.5% to 3.75% for all the mandibular positions. 3. The magnification effects in the tomographic scans were nearly identical for the anterior and posterior with a range of 2.00% to 5.75% in the horizontal and 4.50% to 5.50% in the vertical dimension, respectively. 4. A statistically significant difference between the anterior and posterior measurements was found in the horizontal measurements of the panoramic radiography images of the displaced forward and backward position of the mandible(P<0.05). Also a significant difference between the optimal panoramic and tomographic projections was found only in the vertical measurement(P<0.05).

  • PDF

The angulation and the position change of the planned implant after tomographic imaging (단층촬영상에서 계획된 임플랜트 매식 각도 및 위치에 대한 스텐트 핀의 상대적 각도 및 위치에 대한 평가)

  • Kang, Byung-Cheol
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.127-131
    • /
    • 2007
  • Purpose: To measure the differences of the splint pin angulation and the position of the planned implant site after conventional tomographic analysis. Materials and Methods: The angulation and the location of the metal splint pin retained in acrylic stent were compared with the corrected angulation and the location of the implant fixture on the 331 tomographic images. Results: The stent pins were located buccal in 40%, lingual in 10% to the corrected implant site after analysis of the conventional tomographic image. The angle and the location of the maxillary splint pin were mainly directed buccal on incisor and canine regions. The angle and the location of the splint pins in premolar and molar regions needed less corrections in both maxilla and mandible. Conclusions: This study demonstrated that the use of tomographs was essential for successful dental implant planning.

  • PDF

THREE-DIMENSIONAL COMPUTED TOMOGRAPHY FOR EVALUATION AND PLANNING OF ORAL AND MAXILLOFACIAL SURGERY ; REPORT OF CASES (3차원 입체영상 CT의 구강외과 영역에서의 활용)

  • Kim, Jin;Ro, Hong-Sup
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.4
    • /
    • pp.343-350
    • /
    • 1997
  • Diagnosis of maxillofacial lesions is very difficult. Recent developments in computed tomography enable the production of three dimnesional images of complex anatomical structures from a series of conventional computed tomographic sections. Methods of three-dimensional analysis of computed tomographic images have recently been described. Mostly, reports have concentrated on applications relative to congenital deformities. In this report, one method of three dimensional reformatting is reviwes. Images formed by this method have solid surface appearance and can be color enhanced and manipulated to isolate anatomic structures of interest. The program allows tissue densitis, volumes, and distances. This report emphasizes maxillofacial applications other than those previously reported in the surgical and radiological literature.

  • PDF