• Title/Summary/Keyword: tomato growing

Search Result 113, Processing Time 0.024 seconds

Optimum Management of Tomato Side Stems Pruning in Summer Cultivation (고온기 토마토 재배시 적정 측지관리방법 구명)

  • Kim, Sung Eun;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.167-173
    • /
    • 2014
  • This research was conducted to establish appropriate methods to prune tomato side stems during summer. Cherry tomatoes "Unicorn" (Monsanto Korea, Korea) were grown in the coir based growing medium, and irrigation was controlled time based system. There were three pruning treatments: 1) removing all side stems (ACUT), 2) remaining two leaves on the side stems right below any cluster (PCUT), and 3) remaining two leaves on all side stems (LEFT). Experimental results showed that the occurrence of swollen stems, a symptom of nutrient excess, was influenced by side stem pruning due to blocking of consumption of photosynthetic products. The photosynthetic rate was not different between leaves on main stem and those on side shoots. Therefore the differences in the total amounts of photosynthetic products seemed to come out from the differences in leaf areas on each treatments, influencing on fruit yield difference. The yields and harvesting rates were better in ACUT treatment when tomato plants were harvested until $5^{th}$ cluster, however tomato yield was higher in LEFT treatment when more then $5^{th}$ clusters were harvested.

Establishment of 60 Mesh Nets to Reduce Crop Loss by Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) in Tomato Greenhouse (토마토 온실에서 방충망 설치에 의한 담배가루이 피해 경감)

  • Chung, Bu-Keun;Lee, Heung-Su;Kim, Yeong-Bong
    • Korean journal of applied entomology
    • /
    • v.52 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • Investigations were conducted to prevent entrance of Bemisia tabaci (Gennadius) with very fine mesh nets. B. tabaci vectors tomato yellow leaf curl virus in tomatoes. B. tabaci could be completely prevented to penetrate into an 83 mesh net, though few of them passed the 60 mesh net. An independent 60 mesh net cage was built within one of the three interconnected common plastic greenhouse ($21.0{\times}18.3m$) in order to find its usefulness as a crop protection tool from insect pests. TYLCV infected tomato plants were not detected, though a few eggs of B. tabaci and mines of Liriomyza trifolii (Burgess) were detected locally at the entrance of the sliding door. There were practically no significant differences between treatments of nets and the conventional plant height, leaf length and width, number of floret clusters, sugar brix, and product yield. In viewpoints of commercialization, it could be considered highly prospectful to apply to the nets to glasshouses or other greenhouses in which the growing period of crops is long, if the nets were used in the openings of sides, ceilings, and entrances of the greenhouse. However, it might be necessary to take preventive measures for occurrences of insect pests living in soil, temporarily or permanently, as well as high humidity diseases.

Effects of Cultivation Season and Method on Growth and Quality of Tomato (토마토의 재배시기(栽培時期)와 재배방식(栽培方式)이 생육(生育) 및 품질(品質)에 미치는 영향(影響))

  • Park, Se Won;Lee, Ji Won;Kim, Kwang Yong;Kim, Young Cheol;Hong, Se Jin
    • Horticultural Science & Technology
    • /
    • v.17 no.2
    • /
    • pp.115-117
    • /
    • 1999
  • Tomato (Lycopersicon esculentum) fruits were grown by the hydroponic cultivation system using perlite and soil cultivation system. The growth, yield, and fruit quality were compared between two growing seasons of spring and summer and two cultivation systems, respectively. In tomato, little difference was observed in growth and yield between two cultivation systems, but plant growth and total yield of fruits were much more in summer than in spring. The contents of glucose and fructose were more in spring-grown fruit than in summer-grown one, and in hydroponically cultivated fruit than in soilcultivated, respectively. The weight loss during room temperature storage was lower in hydroponically cultivated fruit than in soil-cultivated one, and in summer-grown fruit than in spring-grown one, respectively. In terms of color change, the shelf-life of tomato fruit was shorter by one day in summer-grown one fruit than in spring-grown one, and in hydroponcically cultivated one fruit than in soil-cultivated, respectively.

  • PDF

Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System (식물공장형육묘시스템 내 광량에 따른 오이와 토마토 접수 및 대목의 증발산량 및 생육 변화)

  • Park, Seon Woo;An, Sewoong;Kwack, Yurina
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Recently, it is difficult to produce uniform scions and rootstocks with high quality in a greenhouse due to weather extremes. The closed transplant production system is useful for producing scions and rootstocks with desirable morphological characteristics by environment control regardless of weather outside. In this study, we investigated transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions for precise irrigation control in a closed transplant production system. Hanging system to measure continuously the weight of plug tray consisting of seedlings and substrate with load-cell was installed in each growing bed. Using this system, we confirmed initial wilting point of cucumber and tomato seedlings, and conducted subirrigation when moisture content of substrate was not below 50%. The irrigation time of cucumber scions and rootstocks were 7 and 6 days after sowing, respectively. In tomato scions and rootstocks grown under PPF (photosynthetic photon flux) 300 μmol·m-2·s-1, the irrigation time were 5, 8, 11, and 13 days after sowing. Increasing light intensity increased transpiration rates and differences of transpiration rates by light intensity was higher in tomato seedlings. The growth of cucumber and tomato seedlings was promoted by increasing light intensity, especially, hypocotyl elongation and stem thickening was affected by light intensity. Cumulative transpiration rate of plug tray in cucumber and tomato seedlings was increased by increasing light intensity, and daily transpiration rate per seedling was regressed by 1st-order linear equation with high correlation coefficient. Estimation of transpiration rates by weighing continuously plug tray of vegetable seedlings can be useful to control more accurately irrigation schedule in a closed transplant production system.

Characteristics of PPF Transmittance and Heat Flow by Double Covering Methods of Plastic Film in Tomato Greenhouse (토마토재배용 플라스틱온실의 이중피복방법에 따른 광합성유효광량자속 투과 및 열관류 특성)

  • Lee, H.W.;Sim, S.Y.;Kim, Y.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.11-18
    • /
    • 2010
  • This study was conducted to provide design data for deciding covering method in double layers greenhouse. The variation of photosynthetic photon flux (PPF) and heat flow in air inflated and conventional double layers greenhouse was analyzed. The PPF of air inflated double covering greenhouse was less than that of conventional greenhouse during summer season because the more PPF comes into conventional greenhouse through roof vent which was rolled up for ventilation. The air inflated double layers covering greenhouse was superior to conventional type in the aspect of controlling inside temperature down owing to lower irradiation. The PPF of air inflated greenhouse was greater than that of conventional greenhouse during winter season because the transmittance of conventional greenhouse decreased by dust collected on inside plastic film nearly closed for insulation. Considering the PPF not sufficient for tomato growing in winter, the air inflated double covering system with the greater transmittance was better than conventional covering system. When the inside air of air inflated greenhouse was injected into space between the double layers of covering, the PPF of air inflated greenhouse was much less than the conventional greenhouse because the transmittance of air inflated double covering decreased due to condensation of highly humidified inside air. It was concluded that the more dried outside air should be used for inflating double layers covering. The heat insulation performance of air inflated double covering system was superior to conventional double covering system when comparing the overall heat transfer coefficients for each covering method. However the differences among the overall heat transfer coefficients depending on difference between inside and outside temperatures of greenhouse were great, it is necessary to conduct additional experiment for investigating the overall heat transfer coefficient to design the double layers covering.

Glyphosate Toxicity: I. Long Term Analysis of Shikimic Acid Accumulation and Chlorophyll Degradation in Tomato Plant (Glyphosate 독성(毒性): I. Glyphosate 처리(處理)가 토마토의 Shikimic Acid의 축적(蓄積)과 엽록소(葉綠素)의 분해(分解)에 미치는 영향(影響))

  • Kim, Tae-Wan;Amrhein, Nikolaus
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.141-147
    • /
    • 1995
  • Glyphosate(N-[phosphonomethyl]glycine) applied to the assimilate-exporting leaves or sprayed to the whole plants of tomato(Lycopersicon esculentum Mil var. Moneymaker). Glyphosate induced the rapid accumulation of shikimic acid within 24 h. The accumulation of shikimic acid companied with chlorophyll loss in meristematic leaves, i.e. apical leaves. The chlorosis was acropetal in apical region of young growing leaf. The degradation of chlorophyll seems to be a secondary or tertiary effect of glyphosate. However, the level of shikimic acid accumulated was reduced except for roots and apical leaves from 5 days after treatment. The accumulating levels are considerably differed through the applicated regions. The level of shikimic acid is highest at the apical meristem 4 days after the application to 3rd old leaf.

  • PDF

Probabilistic exposure assessment, a risk-based sampling plan and food safety performance evaluation of common vegetables (tomato and brinjal) in Bangladesh

  • Mazumder, Mohammad Nurun-Nabi;Bo, Aung Bo;Shin, Seung Chul;Jacxsens, Liesbeth;Akter, Tahmina;Bir, Md. Shahidul Haque;Aktar, Most Mohshina;Rahman, Md. Habibur;WeiQiang, Jia;Park, Kee Woong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • Along with the widespread use of pesticides in the world, concerns over human health impacts are rapidly growing. There is a large body of evidence on the relationship between the exposure to pesticides and the elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. This research assessed the health risk of pesticide residues by the dietary intake of vegetables collected from the agro-based markets of Dhaka, Bangladesh. As some of the banned pesticides were also found in vegetable samples, they may pose a higher risk because of cheaper availability and hence the government of Bangladesh should take strong measures to control these banned pesticides. Five organo phosphorus (chlorpyrifos, parathion, ethion, acephate, fenthion) and two carbamate (carbaryl and carbofuran) pesticide residues were identified in twenty four samples of two common vegetables (tomato and brinjal). The pesticide residues ranged from below a detectable limit (< 0.01) to 0.36 mg·kg-1. Acephate, chlorpyrifos, ethion, and carbaryl were detected in only one sample, while co-occurrence occurred twice for parathion. Continuous monitoring and strict regulation should be enforced regarding the control of pesticide residues in fresh vegetables and other food commodities in Bangladesh.

Study on the Establishment of Project Duty of Water and Facility Capacity in Upland Irrigation - On the Estimation of Duty of Water for the Upland Crops by the Measurement of Evapotranspiration - (밭 관개의 계획용수량 및 시설용량의 정립에 관한 연구 -증발산량 실측에 의한 밭용수량의 추정에 관하여-)

  • 김시원;김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.23-44
    • /
    • 1988
  • The evaportranspiration of upland crops was measured by four types of lysimeter and water consumption characteristics together with the optimum irrigation point by the crops was defind. Among the evapotranspiration estimation formulas, the constant of wind function in the modified Penman equation was corrected to agree with the meteorological conditions of Korea. The evapotranspiration of the crops in the project standard year was estimated according to the cropping system of the project area in Chungju, and from the estimated evapotras - spiration, net duty of water per one time and irrigation in tervals were investigated. The results obtained are summarized as follows: 1. The evapotranspiration of the same crop measured at the same plot was slightly different by the lysimetric methods, and among the four types of lysimeter, the accuracy of the floating lysimeter was the highest. 2. The yields among the watering treatments showed the significance of 5% in the expe- riment with red cabbage and Chinese cabbage, and significance of 1% in the crisphead lettuce, and the optimum irrigation point for the tested crops was defined ad pF 2.0 by the least squre difference test. 3. The evapotranspiration of the crops in the mid-season stage showed maximum among the growing stages, and the average daily evapotranspiration by the crops over the growing seasons of cabbage, crisphead lettuce, Chinese cabbage, summer cucumber, tornato, salary and autumn cucumber was 4.18mm, 4.77mm, 3.9qrnm, 5.68mnn, joonim, 4.26mm and 3.3qrnn, respectively. 4. From the investigated soil moisture extration pattern(SMEP) of the crisphead lettuce, cucumber and tomato, the proportion of the first layer in the initial stage showed over so%, and the SMEP of the lowest fourth layer during the late-season stage in the experiment cabbage and Chinese cabbage was 15.8% and 16.9, respectively, with showed that the root elongated th the lowest soil layer. 5. The total available moisture(TAM) of clay loam was 21.2-23.3mm and that of sandy loam was 16.1 - 19.0mm under the optimum irrigation point of pF. 2.0, and the total readily available moisture( TRAM) of the crops cultivated in the clay loam soil was larger than that cultivated in the sandy loam soil, and the TRAM during the mid-and late-season were larger than that of the inital and crop development stage. 6. The estimated evapotranspration by the corrected Pennam equation, whkh corrected the constant of the wind function in the modified Penman equation, was nearly agreed with the actually measured evaporanspiration of grass. 7. Among the several evaportranspiration estimation methods, the evapotranspiration es- timated by the corrected Pennam equation was closed to the actual evapotranspiration of reference crop (grass) evapotranspiration, therefore it is suggested to use the corrected Penman equation to determine the duty of water of corps. 8. The average crop coefficient (Kc) of cabbage by the corrected Penman equation was 0.94 and that of crisphead lettuce, summer cucumber, tomato, salary, Chinese cabbage and autumn cucumber was 1.07, 1.22, 1.02, 1.01, 1.35, 1.09, respectively 9. The estimated total evapotranspiration of cabbage in the project area( Chungju) by the corrected Penman equation was 223.9mm and that of crisphead lettuce, Chinese cabbage, summer cucumber, tomato, salary and auturun cucumber was 215.7mm, 205.9mm, 359.Omrn, 300.9mm, 332.lmm and 202.7mm, respectively. 10. The net duty of water per one time of the crops cultivated in the sandy loam soil, and the net duty of water per one time in the mid-season & late-season showed larger than that of the initial stage. 11. The shortest irrigation interval of cabbage in the project area was 4.2 days, and that of crisphead lettuce, Chinese cabbage, cucumber, tomato and salary was 1.2days, 2.3days, 1.8days, 2.2days and 2.7days, respectively.

  • PDF

Effects of Low Air Temperature and Light Intensity on Yield and Quality of Tomato at the Early Growth Stage (정식 초기의 저온·저일조가 토마토 수량·품질에 미치는 영향)

  • Wi, Seung Hwan;Yeo, Kyung-Hwan;Choi, Hak Soon;Yu, Inho;Lee, Jin Hyong;Lee, Hee Ju
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.448-454
    • /
    • 2021
  • This study was conducted to the effect of low air temperature and light intensity conditions on yield and quality of tomato at the early stage of growth in Korea. Inplastic greenhouses, low temperature and low temperature with shade treatments were performed from 17 to 42 days after plant. Tomato growing degree days were decreased 5.5% due to cold treatment during the treatment period. Light intensity decreased 74.7% of growing degree days due to shade. After commencing treatments, the plant growth decreased by low temperature and low radiation except for height. Analysis of the yield showed that the first harvest date was the same, but the yield of the control was 3.3 times higher than low temperature with shade treatment. The cumulative yields at 87 days after transplanting were 1734, 1131, and 854 g per plant for control, low temperature, and low temperature with shade, respectively. The sugar and acidity of tomatoes did not differ between treatment and harvesting season. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of the photosynthetic rate. The results showed that the maximum photosynthetic rate, J (electric transportation rate), TPU (triose phosphate utilization), and Rd (dark respiration rate) did not show any difference with temperature, but were reduced by shading. Vcmax (maximum carboxylation rate) was decreased depending on the low temperature and the shade. Results indicated that low temperature and light intensity at the early growth stage can be inhibited the growth in the early stage but this phenomenon might be recovered afterward. The yield was reduced by low temperature and low intensity and there was no difference in quality.