• Title/Summary/Keyword: tomato extracts

Search Result 56, Processing Time 0.034 seconds

Identification of Brassinosteroid-Related Protein, BAK1 from Nutrition Deficient Tomato Cultivated by Soilless Cultivation System (수경재배 영양결핍토마토에서 브레시노스테로이드관련 신호전달 단백질 BAK1의 동정)

  • Shin, Pyung-Gyun;Chang, An-Cheol;Hong, Sung-Chang;Lee, Ki-Sang
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1729-1733
    • /
    • 2007
  • Brassinolide insensitive associated receptor kinase 1(BAK1) is a critical component that play an important roles in signaling of brassinosteroid biosynthesis. Brassinosteroid-deficient and -insensitive mutants showed the characteristic of dwarf symptom. The nutrient deficient tomato showing stunt phenomenon was selected from soiless cultivation system using modified Sonneveld hydroponic solution. Twenty eight protein spots showing different expression levels compared to the control were isolated from extracts of stunted tomato leaves by 2D PAGE analyses. Significantly down-regulated 6 protein spots out of 28 protein spots were analyzed and sequenced by MALDI-TOF mass spectrometry. The protein spot having pI=4.5 and MW=24 kDa was identified as a signal protein, BAK1, which is directly related to brassinosteroid biosynthesis. In addition, five other protein spots were identified as BCK1, cystein proteinase, sulfutase, peroxidase and zinc finger factor respectively, and they were also signal proteins related to brassinosteroid biosynthesis. Furthermore, amplification of 500bp of BAK1 mRNA by RT-PCR using a primer set of peptide matched regions was inhibited conpared to that of the wild type. The results sugested that the BAK1 might be regulated at the transcription level in response to nutrition applications.

Rapid Detection and Identification of Cucumber Mosaic Virus by Reverse Transcription and Polymerase Chain Reaction (RT-PCR) and Restriction Analysis (역전사 중합효소련쇄반응(RT-PCR)과 제한효소 분석을 이용한 오이 모자이크 바이러스의 신속한 검정과 동정)

  • Park, Won Mok
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.267-274
    • /
    • 1995
  • Based upon the nucleotide sequence of As strain of cucumber mosaic virus (CMV-As0 RNA4, coat protein (CP) gene was selected for the design of oligonucleotide primers of polymerase chain reaction (PCR) for detection and identification of the virus. Reverse transcription and polymerase chain reaction (RT-PCR) was performed with a set of 18-mer CMV CP-specific primers to amplify a 671 bp fragment from crude nucleic acid extracts of virus-infected leaf tissues as well as purified viral RNAs. The minimum concentrations of template viral RNA and crude nucleic acids from infected tobacco tissue required to detect the virus were 1.0 fg and 1:65,536 (w/v), respectively. No PCR product was obtained when potato virus Y-VN RNA or extracts of healthy plants were used as templates in RT-PCR using the same primers. The RT-PCR detected CMV-Y strain as well as CMV-As strain. Restriction analysis of the two individual PCR amplified DNA fragments from CMV-As and CMV-Y strains showed distinct polymorphic patterns. PCR product from CMV-As has a single recognition site for EcoRI and EcoRV, respectively, and the product from CMV-Y has no site for EcoRI or EcoRV but only one site for HindIII. The RT-PCR was able to detect the virus in the tissues of infected pepper, tomato and Chinese cabbage plants.

  • PDF

Synergistic Interactions of Schizostatin Identified from Schizophyllum commune with Demethylation Inhibitor Fungicides

  • Park, Min Young;Jeon, Byeong Jun;Kang, Ji Eun;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.579-590
    • /
    • 2020
  • Botrytis cinerea, which causes gray mold disease in more than 200 plant species, is an economically important pathogen that is mainly controlled by synthetic fungicides. Synergistic fungicide mixtures can help reduce fungicide residues in the environment and mitigate the development of fungicide-resistant strains. In this study, we screened microbial culture extracts on Botrytis cinerea to identify an antifungal synergist for tebuconazole. Among the 4,006 microbial extracts screened in this study, the culture extract from Schizophyllum commune displayed the most enhanced activity with a sub-lethal dosage of tebuconazole, and the active ingredient was identified as schizostatin. In combination with 5 ㎍/ml tebuconazole, schizostatin (1 ㎍/ml) showed disease control efficacy against gray mold on tomato leaf similar to that achieved with 20 ㎍/ml tebuconazole treatment alone. Interestingly, schizostatin showed demethylation inhibitor (DMI)-specific synergistic interactions in the crossed-paper strip assay using commercial fungicides. In a checkerboard assay with schizostatin and DMIs, the fractional inhibitory concentration values were 0.0938-0.375. To assess the molecular mechanisms underlying this synergism, the transcription levels of the ergosterol biosynthetic genes were observed in response to DMIs, schizostatin, and their mixtures. Treatment with DMIs increased the erg11 (the target gene of DMI fungicides) expression level 15.4-56.6-fold. However, treatment with a mixture of schizostatin and DMIs evidently reverted erg11 transcription levels to the pre-DMI treatment levels. These results show the potential of schizostatin as a natural antifungal synergist that can reduce the dose of DMIs applied in the field without compromising the disease control efficacy of the fungicides.

Nitrogen Biofixing Bacteria Compensate for the Yield Loss Caused by Viral Satellite RNA Associated with Cucumber Mosaic Virus in Tomato

  • Dashti, N.H.;Montasser, M.S.;Ali, N.Y.;Bhardwaj, R.G.;Smith, D.L.
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2007
  • To overcome the problem of the yield reduction due to the viral satellite mediated protection, a culture mix of three nitrogen-fixing bacteria species of the genus Azospirillum (A. brasilienses N040, A. brasilienses SP7, and A. lipoferum MRB16), and one strain of cyanobacteria (Anabena oryzae Fritsch) were utilized as biofertilizer mixture in both greenhouse and field experiments. When protected plants were treated with biofertilizer mixtures, the fruit yield of biofertilized plants increased by 48% and 40% in a greenhouse and field experiment, respectively, compared to untreated plants inoculated with the protective viral strain alone. Polyacrylamide gel electrophoresis (PAGE) analysis of total nucleic acid (TNA) extracts revealed that biofertilization did not affect the accumulation of the viral satellite RNA (CARNA 5) that is required for plant protection against other destructive viral strains of CMV. The yield increment was a good compensation for the yield loss caused by the use of the protective viral strain associated with CARNA 5.

Influence of Pesticides and Environmentally Friendly Agricultural Materials used in Tomato Cultivation on the Pathogenicity of the Entomopathogenic Fungus, Beauveria bassiana (토마토재배에 사용하는 농약과 친환경농자재가 곤충 병원성 곰팡이 Beauveria bassiana의 병원성에 미치는 영향)

  • Park, Jong-Ho;Hong, Sung-Jun;Han, Eun-Jung;Shim, Chang-Ki;Lee, Minho;Kim, Min-Jeong;Kim, JeongJun;Kim, Yong-Ki
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.357-364
    • /
    • 2012
  • This study was conducted to observe the influence of chemical pesticides and environmentally friendly agricultural materials (EFAMs) used in tomato cultivation on the pathogenicity of the entomopathogenic fungus, Beauveria bassiana. B. bassiana mycelium didn't grow on PDA media containing 13 fungicides including chlorothalonil and colonies were not formed on PDA media containing 12 fungicides. B. bassiana mycelium grew and colonies were formed on all PDA media containing insecticides and EFAMs, but mycelial growth and colony formation on most PDA media were significantly inhibited compared to the control. The insecticidal activity of B. bassiana against Trialeurodes vaporariorum was decreased when fungicides (polyoxin B, mandipropamid) and EFAMs containing sulfur were added, but insecticides (pyridaben, dinotefuran) and EFAMs originated from plant extracts did not have any influence on the insecticidal activity of B. bassiana. The pathogenicity of a mixture of B. bassiana and polyoxin B against T. vaporariorum was lower than that of B. bassiana alone under greenhouse conditions.

Determination of mandipropamid residues in agricultural commodities using high-performance liquid chromatography with mass spectrometry (고성능액체크로마토그래피를 이용한 농산물 중 Mandipropamid의 잔류분석법 확립)

  • Kwon, Chan Hyeok;Chang, Moon Ik;Im, Moo Hyeog;Choi, Hoon;Jung, Da I;Lee, Su Chan;Yu, Jin Young;Lee, Young Deuk;Lee, Jong Ok;Hong, Moo Ki
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.518-525
    • /
    • 2008
  • Mandipropamid is a new mandelamide-type fungicide to control foliar Oomycete pathogens in some vegetables. An analytical method was developed to determine mandipropamid residues in agricultural commodities using high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS). Mandipropamid was extracted with methanol from grape, tomato, green pepper, Chinese cabbage and potato samples. The extract was diluted with saturated sodium chloride solution and distilled water, and dichloromethane partition was followed to recover the mandipropamid from the aqueous phase. Florisil column chromatography was employed to further remove interfering co-extractives prior to HPLC analysis. Reverse-phased HPLC was successfully applied to determine mandipropamid in sample extracts with the detection at its ${\lambda}_{max}$ (223 nm). Overall recoveries of mandipropamid from fortified samples averaged $99.8{\pm}1.7$ (n=6), $89.3{\pm}5.3$ (n=6), $98.7{\pm}2.2$ (n=6), $99.7{\pm}6.8$ (n=6) and $91.1{\pm}3.1$ (n=6) for grape, tomato, green pepper, Chinese cabbage and potato, respectively. Limit of quantification of the method was 0.02~0.04 mg/kg for all samples. A LC/mass spectrometry with selected-ion monitoring was also provided to confirm the suspected residue. The proposed method was reproducible and sensitive enough to determine the terminal residue of mandipropamid in agricultural commodities.

Antifungal Activity of Zanthoxylium schinifolium Against Fusarium graminearum, a Barley Powdery Mildew Fungus. (보리 흰가루병 곰팡이 Fusarium graminearum에 대한 산초 추출물의 항진균 활성)

  • Kim, Byum-Soo;Jang, Han-Su;Choi, Chung-Sig;Kim, Jong-Sik;Kwon, Gi-Seok;Kwun, In-Sook;Son, Kun-Ho;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.974-979
    • /
    • 2008
  • The powdery mildew, a fungal plant disease found in varieties of plant cultures, is occurred by attack with Fusarium sp., Sphaerotheca sp., Leveilluna sp., and Eryshipe sp.. In this study we investigated the control of Fusarium graminearum, a barley powdery mildew fungus, by natural plant extracts. Among the 900 plant extracts tested, Zanthoxylum schinifolium, Ligusticum acutilobum, Bidens frondosa L., Dictamnus dasycarpus, Evodia officinalis, Disporum sessile, Scopolia japonica Max., Styrax japonica S. et Z., Dictamnus dasycarpus Turcz., Sinomenium acutum Rehder et Wils., Eugenia aromaticum, Rubus parvifolius L., Reynoutria elliptica, Coptis chinensis, Paeonia lactiflora Pall., Rheum undalatum, Paeonia suffruticosa, Oenothera odorata Jacq., Euphorbia pekinensis Rupr., and Nepeta cataria were selected based on spore germination inhibition assay. Further mycelial growth inhibition assay with economical and safety considerations led us to finally select Z. schinifolium (sancho) for control of F. graminearum. To produce antifungal sancho extract, methanol was suitable for extraction and subsequent fractionations of the extract showed that the water residue mainly had antifungal activity. The sancho extract and its fractions showed minor antibacterial activity against different pathogenic or food spoilage bacteria, but they did not show any harmful effects against young tomato plant by treatment of $1,000\;{\mu}g/ml$ in green chamber test. These results suggested that the extract of sancho has high potentials on control of a powdery mildew fungus, F. graminearum.

Effect of Natural Foods on the Inhibition of N-Nitrosodimethylamine Formation (천연식물성분이 N-Nitrosodimethylamine 생성억제에 미치는 영향)

  • 이수정;신정혜;정미자;성낙주
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • The effect of natural foods, utilizing the extracts or juices of teas(Green tea; Camellia sinesis, Du'chung; Eucommia ulmoides Oliver), medicinal plants(Eu sung cho; Houttuynia cordata Thunb, Sam back cho; Saurus Chinensis, Baek hwa sa seal cho; Oldenladia diffusa Roxb.) seaweeds(Laver; Porphyra tenera, Sea mustard; Undaria pinnatifida, Sea staghorn; Condium fragile) and vegetables(Sweet pepper; Capsicum annuum var. angulosum, Kale; Brassia oleracea var.. acephala, Cucumber; Cucumis sativus, Onion; Allium cepa) and fruits(Tomato; Lycopericon esculentum, Maesil; Prunus mume, Plum; Prunus saticina and Grape; Vitis spp.)on the inhibition of N-Nitrosodimethylamine(NDMA) formation was investigated from the various conditions. The inhibition effect was observed in vitro using the reaction fluids of pH 1.2, 4.2 and 6.0. From the teas and medicinal plants, there was a positive response of NDMA formation; however, From the seaweed extracts, there was a negative response of the inhibition effect of NDMA formation, and as the pH of reaction fluids and the amount of materials increase, the inhibition of NDMA formation was strengthened. The inhibition ratios by the level of pH are as follows: under pH 1.2 vegetable juice were 57.6∼99.7% and fruits were 35.9∼99.7%; under pH 4.2 vegetable juice were 55.0∼97.5% and fruits were 21.3∼96.8%. All of the materials observed has been proved and shown the inhibition effect of NDMA formation.

  • PDF

Separation of Kiwi Pectinesterase Inhibitor and its Effect on Cloud Maintenance in Cloudy Juices (Kiwi pectinesterase inhibitor의 분리와 불투명 과즙의 혼탁성 유지)

  • Kim, Myoung-Hwa;Go, Eun-Kyoung;Hou, Won-Nyoung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1079-1086
    • /
    • 2000
  • Pectinesterase inhibitor(PEI) of ripened kiwi fruit(Actinidia chinensis) was separated with affinity chromatography using CNBr-activated Sepharose 4B being covalently bound by orange pectinesterse(PE). The affinity resin strongly and selectively bound PEI, which could be eluted in high yield as a single peak by pH 9.5 without loss of inhibitory activity. The separated PEI had maintained almost inhibitory activity at $-25^{\circ}C$ and $5^{\circ}C$ during 30 days but lost it at room temperature in 4 weeks. The PEI possessed a molecular weight of 16.6 KDa, as estimated by 12.5% SDS-PAGE. PEI had optimum pH of 7.5, optimum temperature of below $10^{\circ}C$ and stability up to $70^{\circ}C$. Also, optimum inhibitory activity for PEI was obtained in 0.2 M NaCl of substrate solutions. The kind of inhibition on tomato pectinesterase was found to be noncompetitive, using citrus pectin as substrate. Fresh orange juice added with crude PEI extracts maintained almost the same cloud stability as pasteurized juice. In case of apple juice, the addition of crude PEI extracts to apple juice had decrease of L-ascorbic acid with nearly no effect on cloud loss.

  • PDF

Insecticidal Effect of Moutan cortex radicis Extract for Control the Western Flower Thrips, Frankliniella occidentalis, on Greenhouse Pepper (시설 고추에 발생하는 꽃노랑총채벌레 방제를 위한 목단피 추출물의 살충효과)

  • Mi Hye Seo;Kyung Hye Seo;Kyung San Choi;Sun-Young Lee;Jung Beom Yoon;Jung-Joon Park
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In addition to causing direct feeding damage to a variety of greenhouse crops, Frankliniella occidentalis also inflicts indirect harm by facilitating the transmission of the tomato spotted wilt virus. Historically, the prevention of F. occidentalis infestations has relied heavily on pesticide use. However, this approach has led to significant side effects in agricultural ecosystems, including the development of pest resistance and challenges in effective prevention. In response to these issues, research has been directed towards identifying alternative substances that circumvent the tolerance developed against chemical pesticides. Extracts from sixty-seven medicinal plants were prepared by soaking them in water for 24 hours at room temperature. These extracts were then applied to adult F. occidentalis, with particular attention to moutan extract treatment. This treatment demonstrated a 100% insecticidal effect on the first day. The moutan extract, specifically, was prepared using 50% ethanol, after which the ethanol and water were removed via a rotary evaporator. The resultant product was then lyophilized into a powder and used after being diluted with water. In indoor experiments, a 40% diluted solution was sprayed onto F. occidentalis, exhibiting a 100% insecticidal effect 24 hours post-treatment. Furthermore, a pot test indicated a 78% insecticidal effect on the first day of application. Ongoing research includes the analysis of active substances that demonstrate exceptional insecticidal properties and the conduct of on-site validation tests. The application of the aforementioned extract is anticipated to be effective in the prevention of F. occidentalis infestations.