• Title/Summary/Keyword: toluene gas sensors

Search Result 26, Processing Time 0.023 seconds

Micro toluene gas sensor of SWNTs-PtOx system using the vacuum filtering deposition method (진공여과증착법을 이용한 SWNT-PtOx계 마이크로 톨루엔 가스센서)

  • Kim, Il-Jin;Jeon, Young-Zip;Choi, Chang-Kyu;Lee, Young-Uk;Choi, Si-Young;Han, Chang-Soo;Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • Toluene($C_6H_5CH_3$) gas sensors were fabricated using $PtO_x$ loaded with SWNTs by a new deposition method. The nanoparticle powders of SWNTs-$PtO_x$ composite were deposited on Si wafer substrates by a vacuum filtering deposition method. The fabricated sensors were tested against toluene gas which is a kind of the Volatile Organic Compounds. The composition ratio that exhibited the highest response to toluene gases was SWNTs : $PtO_x\;=\;99:1$ in wt% ratio at operating temperature of about $150^{\circ}C$. The response and recovery times of the sensors were as short as less than 1 min., respectively.

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Kang, Jun-gu;Park, Joon-Shik;An, Byeong-Seon;Yang, Cheol-Woong;Lee, Hoo-Jeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1867-1872
    • /
    • 2018
  • This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.

Comparative Analysis of Indoor Mixture Gas Patterns and Reference Single Gas Patterns Obtained from E-Nose for Indoor Air Quality Monitoring

  • Choi, Jang Sik;Yu, Joon Boo;Jeon, Jin Young;Lee, Sang Hun;Kim, Jae Hong;Park, Jang Pyo;Jeong, Yong Won;Byun, Hyung Gi
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.227-231
    • /
    • 2018
  • Indoor air pollution has become a serious issue, affecting the health and comfort of building occupants. Volatile organic compounds (VOCs) are among the most common indoor contaminants, and are released from numerous indoor emission sources. Among the VOCs, formaldehyde and toluene are toxic chemicals at low levels and are frequently detected indoors. Exposure to formaldehyde and toluene can irritate sensitive tissue and may increase the risk of cancer. Therefore, monitoring formaldehyde and toluene is critical for the health and comfort of residents. In addition, as human indoor activities can generate VOC gases, analysis of their influence on VOCs is needed. In this study, we compared electronic nose (E-Nose) data for formaldehyde and toluene with E-Nose data for indoor mixture gas with consideration for human indoor activities.

Three-dimensional and Multilayered Structure Prepared by Area of Platinum Transfer Printing (전사 인쇄에 의한 3차원 백금 다공성 다층구조)

  • Jeong, Seung-Jae;Choi, Yong Ho;Cho, Jeong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.113-116
    • /
    • 2019
  • A three-dimensional porous structure was fabricated by pattern transfer printing for applications of electrodes in gas sensors. To form replica patterns, solutions were mixed with acetone, toluene, heptane, and poly(methyl methacrylate). These replica patterns can also be formed on substrates such as polyimide, polydimethylsiloxane, and silicon. The wide range of line widths from 1 to $5{\mu}m$ was derived from the surface grating patterns of master substrates. The cross-bar pattern with 40 layers showed a thickness of 600 nm. The area of platinum transferred patterns with different line widths was enhanced to $20{\times}25mm$, which is applicable to various electrode patterns of gas sensors.

Development of SPR Gas Sensor for Small Molecules Using Molecularly Imprinted Polymer Thin Films

  • Jang, Seong-U;Jin, Seong-Il;Park, Chan-Ryang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.242.2-242.2
    • /
    • 2011
  • Molecularly imprinted polymer thin films were applied to develop a gas sensor based on the surface plasmon resonance phenomenon for small gaseous molecules such as toluene and xylene. The imprinted polymer films were synthesized via photo-polymerization method using various combination of templates, functional monomers and cross-linkers. The temperature of pre-polymerization solutions and the power of UV light were controlled for optimized performance of gas sensing. The morphology and porosity of the polymer films were controlled by varying the mixing ratios of the pre-polymerization solutions and confirmed by atomic force microscopy. By fitting the adsorption/desorption sensorgrams to conventional kinetic models, the effects of different templates and cross-linkers were interpreted in term of the structural differences of the polymer networks formed on the gold film. The sensitivity and selectivity of sensors were estimated for toluene and xylene, and also for humidity and other gaseous molecules such as formaldehyde and ammonia.

  • PDF

Acetone Sensing Characteristics of ZnO Nanoparticles Prepared from Zeolitic Imidazolate Framework-7 (Zeolitic Imidazolate Framework-7로 합성한 ZnO 나노입자의 Acetone 가스 감응 특성)

  • Yoon, Ji Won;Wang, Rui;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.204-208
    • /
    • 2017
  • Highly uniform and well-dispersed Zeolitic Imidazolate Framework-7 (ZIF-7) particles were prepared by the precipitation of $Zn^{2+}$ using benzimidazole, which were converted into ZnO nanoparticles by heat treatment at $500^{\circ}C$ for 24 h. The ZIF-7 derived ZnO nanoparticles showed abundant mesopores, high surface area, and good dispersion. The gas sensing characteristics toward 5 ppm acetone, ethanol, trimethylamine, ammonia, p-xylene, toluene, benzene, and carbon monoxide and carbon dioxide were investigated at $350-450^{\circ}C$. ZIF-7 derived ZnO nanoparticles exhibited high response to 5 ppm acetone ($R_a/R_g=57.6$; $R_a$: resistance under exposure to the air, Rg: resistance under exposure to the gas) at $450^{\circ}C$ and negligible cross-responses to other interference gases (trimethylamine, ammonia, p-xylene, toluene, benzene, carbon monoxide, carbon dioxide) and relatively low responses to ethanol. ZIF derived synthesis of metal oxide nanoparticles can be used to design high performance acetone sensors.

Highly Sensitive and Selective Trimethylamine Sensor Using Yolk-shell Structured Mo-doped Co3O4 Spheres

  • Kim, Tae-Hyung;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.271-276
    • /
    • 2019
  • Pure and 0.5, 1, 2, 5, and 10 at% of Mo-doped $Co_3O_4$ yolk-shell spheres were synthesized by ultrasonic spray pyrolysis of droplets containing Co nitrate, ammonium molybdate, and sucrose and their gas sensing characteristics to 5 ppm trimethylamine (TMA), ethanol, p-xylene, toluene, ammonia, carbon monoxide, and benzene were measured at $225-325^{\circ}C$. The sensor using pure $Co_3O_4$ yolk-shell spheres showed the highest response to p-xylene and very low response to TMA at $250^{\circ}C$, while the doping of Mo into $Co_3O_4$ tended to increase the overall responses of gas sensors. In particular, the sensor using 5 at% Mo-doped $Co_3O_4$ yolk-shell spheres exhibited the high response to TMA with low cross-responses to other interfering gases. The high response and selectivity of Mo-doped $Co_3O_4$ yolk-shell spheres to TMA are attributed to the electronic sensitization by higher valent Mo doping and acid-base interaction between TMA and Mo components.

Gas sensing property of polypyrrole and SnO2 composite (폴리피롤과 산화주석 복합재료를 이용한 센서의 가스 검지 특성)

  • Kim, Do-Yeon;Yu, Joon-Boo;Son, Sung-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.211-215
    • /
    • 2006
  • Conducting polymer (Polypyrrole) and Tin oxide ($SnO_{2}$) composite films have been fabricated with layer-by-layer technique. $SnO_{2}$ layer was screen-printed on $Al_{2}O_{3}$ substrate and then was dip-coated with polypyrrole (Ppy). The microstructures of composite films were evaluated by a field emission scanning electron microscope (FE-SEM) and FTIR spectral analysis. The change in sensitivity to various VOCs was observed. The target VOCs were methanol, ethanol, benzene and toluene. The sensitivities of the $Ppy/SnO_{2}$ sensor to benzene and toluene were very low at 1000 ppm (2.1 %, 1.5 %), while the sensitivities to methanol and ethanol was high (9 %, 11 %). It indicates that the sensors have selectivity to alcoholic gases such as methanol and ethanol.

Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor

  • Woo, Sungyoon;Jo, Mingyeong;Lee, Joon-Seok;Choi, Seung-Ho;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.369-375
    • /
    • 2021
  • In this study, heterogeneous ZnO/CNTF composites were developed to improve the NO2-sensing response, facilitated by the self-heating property. Highly conductive and mechanically stable CNTFs were prepared by a wet-spinning process assisted by the liquid crystal (LC) behavior of CNTs. Metal-organic frameworks (MOFs) of ZIF-8 were precipitated on the surface of the CNTF (ZIF-8/CNTF) via one-pot synthesis in solution. The subsequent calcination process resulted in the formation of the ZnO/CNTF composites. The calcination temperatures were controlled at 400, 500, and 600 ℃ in an N2 atmosphere to confirm the evolution of the microstructures and NO2-sensing properties. Gas sensor characterization was performed at 100 ℃ by applying a DC voltage to induce Joule heating through the CNTF. The results revealed that the ZnO/CNTF composite after calcination at 500 ℃ (ZnO/CNTF-500) exhibited an improved response (Rair/Rgas = 1.086) toward 20 ppm NO2 as compared to the pristine CNTF (Rair/Rgas = 1.063). Selective NO2-sensing properties were demonstrated with negligible responses toward interfering gas species such as H2S, NH3, CO, and toluene. Our approach for the synthesis of MOF-driven ZnO/CNTF composites can provide a new strategy for the fabrication of wearable gas sensors integrated with textile materials.