• 제목/요약/키워드: toluene adsorption

검색결과 163건 처리시간 0.02초

유해대기오염물질 중 14종의 휘발성유기화합물 1차 표준가스개발 (1 μmol/mol 수준) (Development of Primary Standard Gas Mixtures of Fourteen Volatile Organic Compounds in Hazardous Air Pollutants for Accurate Ambient Measurements in Korea (at 1 μmol/mol Levels))

  • 강지환;김용두;김미언;이진홍;이상일
    • 한국대기환경학회지
    • /
    • 제34권2호
    • /
    • pp.331-341
    • /
    • 2018
  • Hazardous air pollutants(HAPs) in the atmosphere are regulated as major air pollutants in Korea by the Air Pollution Control Act. In order to manage and control HAPs, accurate standards, which are traceable to the International System of Units(SI), are required. In this study, primary standard gas mixtures(PSMs) of volatile organic compounds(VOCs) which are specified as HAPs were developed at $1{\mu}mol/mol$ levels. The selected fourteen VOCs include Benzene, Toluene, Ethylbenzene, m-Xylene, Styrene, o-Xylene, Chloroform, 1,1,2-Trichloroethane, Trichloroethylene, Tetrachloroethylene, 1,1-Dichloroethane, Carbon tetrachloride, 1,3-Butadiene, and Dichloromethane. The HAPs PSMs were gravimetrically prepared in aluminum cylinders and their consistency was verified within the relative expanded uncertainty of 0.71% (k=2). Potential adsorption loss onto the internal surface of cylinders was estimated by cylinder-to-cylinder division method. No adsorption loss was observed within the uncerainty of 0.53%. The long-term stability of the HAPs PSMs was evaluated comparing with freshly prepared HAPs PSMs. The HAPs PSMs were stable for one year within the uncertainty of 0.38%. The final uncertainty of the PSMs was determined by combining the preparation uncertainty, verification uncertainty, and stability uncertainty. Finally, traceable and stable HAPs PSMs at $1{\mu}mol/mol$ levels were developed with the uncertainty of less than 0.76% in high-pressure aluminum cylinders.

새집증후군 현상 및 유해가스 제거방안 연구 (Research on the phenomenon of sick house syndrome and how to remove harmful gases)

  • 최유화
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.449-456
    • /
    • 2020
  • 새 집으로 이사를 가거나 집, 사무실 등의 벽지나 바닥재를 바꿨을 때, 인테리어 공사를 한 뒤에 나타날 수 있는 코를 찌르는 매캐한 냄새와 눈이 따가워지는 등의 현상이 새집증후군으로 새집을 장만한 기쁨을 누리는 것도 잠시 뿐이다. 새 건축물이나 새 가구에 사용되는 건축자재, 접착제, 벽지, 페인트 등에서 나오는 휘발성 유기화합물들은 거주자들의 건강과 실내 생활의 불쾌감을 유발시킨다. 이 휘발성 유기화합물들은 대표적 물질인 포름알데히드를 비롯하여 벤젠, 톨루엔, 아세톤, 스틸렌 등이 포함되어 있고 이러한 물질들은 장시간에 걸쳐 서서히 방출되어 거주자들에게 급성 또는 만성적인 질환을 야기한다. 유기 휘발성 물질들의 제거 방법으로는 흡착을 이용한 물리적 방법과 휘발성 물질을 다른 물질로 전환시키는 화학적 방법 또는 두 가지가 혼합된 방법이 주로 사용된다. 본 논고에서는 반응물질의 반응속도와 생성물의 방출을 제어하는 방법으로 얻어지는 서방형의 이산화염소 젤팩과 최적화된 홀 경을 가진 제올라이트 흡착제를 혼용하여 공기 중에 부유하는 포름알데히드를 흡착, 분해시켜 제거하는 효과적인 방법에 대하여 제안하는 바이다.

Emission Reduction of Air Pollutants Produced from Chemical Plants

  • Lee, Byeong-Kyu;Cho, Sung-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제15권E호
    • /
    • pp.29-38
    • /
    • 1999
  • This study identified emission sources and emissions of air pollutants such as volatile organic compounds (VOCs), solvents, and acid gases produced from chemical plants. We collected air samples from various processes, reactors and facilities using VOC detectors and workers' experience. We identified chemical structures and emission concentrations of air pollutants. We analyzed total emissions of air pollutants emitted from the chemical plants. Also, we developed some emission reduction technologies based on chemical types and emission situations of the identified air pollutants. For reduction of air emissions of acid gases, we employed a method improving solubility of pollutants by reducing scrubber operation temperature, increasing surface area for effective contact of gas and liquid, and modifying or changing chemicals used in the acid scrubbers. In order to reduce air emissions of both amines and acid gases, which have had different emission sources each other but treated by one scrubber, we first could separate gas components. And then different control techniques based on components of pollutants were applied to the emission sources. That is, we first applied condensation and then acid scrubbing method using H2SO4 solution for amine treatment. However, we only used an acid scrubbing method using H2O and NaOH solution for acid gas treatment. In order to reduce air emissions of solvents such as dimethylformamide and toluene, we applied condensation and activated carbon adsorption. In order to reduce air emissions of mixture gases containing acid gases and slovents, which could not be separated in the processes, we employed a combination of various air pollution control devices. That is, the mixture gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. In addition, for improvement of condensation efficiency of VOCs, we changed the type of the condensers attached in the reactors as a control device modification. Finally, we could successfully reduce air emissions of pollutants produced from various chenmical processes or facilities by use of proper control methods according to the types and specific emission situations of pollutants.

  • PDF

도장공정 배기가스 내 VOC 처리를 위한 활성탄-광촉매 복합시스템 (Activated Carbon-Photocatalytic Hybrid System for the Treatment of the VOC in the Exhaust Gas from Painting Process)

  • 이찬;차상원;이태규
    • 에너지공학
    • /
    • 제14권2호
    • /
    • pp.133-139
    • /
    • 2005
  • 도장공정에서 발생하는 VOC의 처리를 위한 활성탄-광촉매 복합시스템을 제안하였고, VOC제거성능을 실험적으로 평가하였다. 활성탄 합은 톨루엔 흡착특성에 근거하여 설계하였고, 광촉매 시스템은 $TiO_2/SiO_2$ 유동층 반응기와 $TiO_2$코팅된 필터의 연계시스템으로 설계하였다. 본 활성탄-광촉매 복합시스템은 서로 다른 VOC 화학종 및 농도에 따라 $75\~100\%$에 이르는 VOC제거효율을 보여주었다.

화염분무열분해법을 이용한 TiO2:Fe,V 나노분말의 제조 및 VOCs 분해 특성 (Preparation of TiO2:Fe,V nanoparticles by flame spray pyrolysis and photocatalytic degradation of VOCs)

  • 장한권;장희동;김태오;김선경;최진훈
    • 한국입자에어로졸학회지
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2009
  • Fe- and V-doped titanium dioxide nanoparticles consisting of spherical primary nanoparticles were synthesized from a mixed liquid precursor by using the flame spray pyrolysis. The effects of dopant concentration on the powder properties such as morphology, crystal structure, and light adsorption were analyzed by TEM, XRD, and UV-Vis spectrophotometer, respectively. As the V/Ti molar ratio increased, pure anatase particles were synthesized. On the contrary, rutile phase particles were synthesized as the Fe/Ti ratio increased. Photocatalytic property of as-prepared $TiO_2:Fe,V$ nanoparticles was investigated by measuring the removal efficiency for volatile organic compounds (VOCs) under the irradiation of visible light. After 2 hrs under visible light, the removal efficiencies of benzene, p-xylene, ethylbenzene, and toluene were reached to 21.9%, 21.4%, 19.8% and 17.6% respectively.

  • PDF

Solid-Phase Extraction of L-Muscone from Aqueous Samples with Amberlite XAD-4 for Gas Chromatographic Assay

  • Paik, Man-Jeong;Kim, Kyoung-Rae
    • Archives of Pharmacal Research
    • /
    • 제27권5호
    • /
    • pp.539-543
    • /
    • 2004
  • An efficient analytical method was devised for the accurate L-muscone assay in aqueous samples. It involves solid-phase extraction of L-muscone in adsorption mode using XAD-4 as the sorbent and dichloromethane modified with 10% (v/v) methanol as the eluting solvent. The gas chromatographic analysis of the eluate residue dissolved in toluene on a DB-5MS capillary column provided complete resolution of L-muscone from the co-extracted interferences. The overall method showed excellent linearity ($r^2{\geq}$ 0.9994) in the range of 0.1 to 2.0 $\mu\textrm{g}$/mL with good intra- and inter-day precisions (% RSD = 2.5~7.3) and with high extraction recovery rates ($\geq$ 98.1 %). When the present method was applied to a L-muscone herbal drink product, the within-batch RE (%) in the labeled concentration (1.5 $\mu\textrm{g}$/mL) for the three randomly chosen bottles were -2.4, -1.3 and -3.3 with high precision (% RSD $\leq$ 3.1). The present method is considered to be suitable for quality control evaluation on liquid drinks and other complex formulations fortified with L-muscone.

석유화학계 기초화합물 제조시설과 합성수지 및 기타 플라스틱물질 제조시설의 폐수처리시설 BAT평가 (Assessment of Best Available Technology of Wastewater Treatment Facilities in Petrochemical Basic Compound Manufacturing and Plastics and Synthetic Resins Manufacturing)

  • 김영노;임병진;권오상
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.59-65
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for petrochemical basic compound manufacturing (PBCM) and plastics and synthetic resins manufacturing (PSRM) industry. Wastewater discharged from the each category contains high concentration of COD and toluene. Eighteen sites were surveyed and wastewater qualities were analyzed. Six and two different technologies were applied to the PBCM and PSRM industry for the end-of-pipe treatment process, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options: typical activated-sludge process + sand filtration + activated carbon adsorption (PBCM) and wet oxidation + chemical precipitation + typical activated-sludge process + chemical precipitation (PSRM) were selected as the BAT for each industry.

활성탄을 첨가한 콘크리트벽돌의 물리적 특성 및 환경 성능 평가에 관한 연구 (A Study on the Physical Properties and Environment Efficiency Evaluation in Activated Carbon Concrete Bricks)

  • 우종권;홍상희;전경빈;류현기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.47-51
    • /
    • 2006
  • Modern residing equipment developed much quantitatively along with economic growth but improvement for agreeable residing space of indoor environment is insufficient situation yet. Also, the latest sick-building syndrome discharging room contaminant such as Formaldehyde, toluene, radon etc. built house or buildings newly human body threaten. Radon of them is real condition that raise origination of lung cancer next to smoke. So, wish to in this research by one of solution way of these problems adsorption performance and specie performance excellent activated carbon to concrete bricks for deconstipating suppository that is room finish fare mix and examine closely after grasp physical, mechanical special quality, hazardous substance and specie performance effect. According to result that estimate environment efficiency evaluation, the $CO_2$ absorption amount displayed decrease effect more than about 90% in activated carbon metathesis rate 40% and radon release amount displayed tendency that decrease about $76{\sim}96%$ in activated carbon metathesis rate 40%.

  • PDF

활성탄을 잔골재로 이용한 친환경 모르타르 개발에 관한 연구 (A Study on the Development of Friendly Environment Mortar by Using Activated Carbon as Fine Aggregate)

  • 우종권;홍상희;전경빈;류현기
    • 한국건축시공학회지
    • /
    • 제6권2호
    • /
    • pp.105-109
    • /
    • 2006
  • Modern residing equipment developed much quantitatively along with economic growth but improvement for agreeable residing space of indoor environment is insufficient situation yet. Also, the latest sick-building syndrome discharging room contaminant such as Formaldehyde, toluene, radon etc. built house or buildings newly human body threaten. Radon of them is real condition that raise origination of lung cancer next to smoke. So, wish to in this research by one of solution way of these problems adsorption performance and specie performance excellent activated carbon to mortar for deconstipating suppository that is room finish fare mix and examine closely after grasp physical, mechanical special quality, hazardous substance and specie performance effect. According to result that estimate friendly-environment performance, the $CO_2$ absorption amount displayed decrease effect more than about 90% in activated carbon metathesis rate 80% and radon release amount displayed tendency that decrease about $75{\sim}85%$ in activated carbon metathesis rate 80%.

혼합 유기용제 포집시 습도가 활성탄관의 파과에 미치는 영향 (Effect of Relative Humidity on the Breakthrough of Charcoal Tubes during Mixed Organic Vapor Sampling)

  • 양혁승;김현욱
    • 한국산업보건학회지
    • /
    • 제6권1호
    • /
    • pp.125-137
    • /
    • 1996
  • This study was designed to investigate effects of relative humidity on the breakthrough of charcoal tubes at a fixed vapor concentration and sampling time during mixed organic vapor sampling. A vapor generator was used to generate three different concentrations of mixed organic vapor and a stainless steel chamber was fabricated and utilized to maintain three different percentages of relative humidity while maintaining a constant temperature. The results were as follows; 1. At high relative humidity, breakthrough of mixed organic vapor occurred quickly at low vapor concentration than at high vapor concentration because of the reduced adsorption volume of charcoal tube due to humidity. 2. Breakthrough by competitive adsorption of vapors onto charcoal tube was observed at first from n-hexane having the lowest boiling point and highest vapor pressure among the three organic vapors investigated, followed by TCE. No breakthrough was observed from toluene under all experimental conditions. 3. For n-hexane, breakthrough was observed after 2 hours of sampling and breakthrough rates were increased as relative humidity increased. For TCE, breakthrough was found after 3 hours of sampling and breakthrough rates by sampling time were increased as vapor concentration increased. 4. The adsorbed amount of mixed organic vapor at breakthrough was shown to have statistically significant correlations with sampling time, relative humidity, and vapor concentration in descending order of correlation. Relative humidity and sampling time for n-hexane and sampling time and concentration for TCE were both statistically significantly correlated. 5. Relative humidity was found to affect the amount of breakthrough of mixed organic vapor and n-hexane. Among three percentages of relative humidity investigated, the amount of breakthrough at 85 % relative humidity was significantly larger than those of at lower percentages of relative humidity. No statistically significant difference was found between 25 % and 55 % relative humidity. 6. The results of multiple regression analysis between breakthrough and relative humidity, vapor concentrations showed that the coefficient of determination of mixed organic vapor was 0.263 and those of n-hexane and TCE were 0.275 and 0.189, respectively. 7. Flow rates of sampling pumps used were found to be affected by relative humidity present. At 25 %, 55 %, and 85 % relative humidity, the relative errors of sampling pump were 1.4 %, 13.4 %, and 18.6 %, respectively. In conclusion, the results of this study showed that high relative humidity could reduce the adsorption volume of charcoal tubes and subsequently increase breakthrough rates. Therefore, to prevent breakthrough when sampling mixed organic vapors, it is suggested that either sampling volume be reduced on the flow rate be lowered so as to minimize breakthrough of the most volatile organic vapor in the mixture. In addition, since the flow rates of a sampling pump can be adversely affected by high relative humidity, it is recommended to use a constant flow mode pump when sampling in the highly humid environment.

  • PDF