• Title/Summary/Keyword: toll-like receptor 3 signaling

Search Result 87, Processing Time 0.024 seconds

Toll-like Receptor 4-mediated Apoptotic Cell Death in Primary Isolated Human Cervical Cancers (부인과질환 특이적 종양의 TLR4 매개성 apoptosis 유발에 관한 연구)

  • Won, Jinyoung;Hong, Yunkyung;Park, Sookyoung;Kim, Joo-Heon;Hong, Yonggeun
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.718-725
    • /
    • 2018
  • Toll-like receptor 4 (TLR4) has been implicated in cell proliferation and apoptosis in several types of cancer. In this study, the impact of TLR4 activation on apoptotic cell death in gynecologic cancers induced by lipopolysaccharide (LPS) was investigated. Cervical cancer cell lines were produced from isolated surgical specimens supplied by Paik Hospital. The primary cultures of normal myometrium and gynecologic cancers, including cervical, endometrial, and ovarian cancers, were used to examine the differences in morphological characteristics between normal and cancerous cells. A reverse transcription polymerase chain reaction analysis was used to determine the relative expression levels of TLR4 gene involved in apoptosis-associated signaling in cervical cancer cells. The cancer cell colonies showed a tendency to reach high levels of confluency compared with normal cells. In addition, an enhanced growth rate and loss of contact inhibition were observed in gynecologic cancer cells compared with normal cells (doubling times of 16.6 hr vs. 26 hr, respectively). The expression level of ITGA5, an alpha-5 integrin marker, was upregulated in normal myometrial cells, but this tendency was not exhibited in cervical cancer cells. Furthermore, p53 tumor suppressor gene expression was upregulated, whereas TLR4 and caspase-3 gene expressions were downregulated in cervical cancer cells. Notably, the expression levels of TLR4 and caspase-3 were increased significantly in LPS-treated cancer cells compared with those in non-LPS-treated cells. These results suggest that the TLR4-mediated caspase-dependent apoptotic signaling pathway could be suggested as a therapeutic target for the treatment of gynecologic cancers, including cervical cancers.

Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation

  • Jeong-Woong Park;Marc Ndimukaga;Jaerung So;Sujung Kim;Anh Duc Truong;Ha Thi Thanh Tran;Hoang Vu Dang;Ki-Duk Song
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.183-196
    • /
    • 2023
  • Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages

  • Chen, Yuan-Shen;Chuang, Wei-Chu;Kung, Hsiu-Ni;Cheng, Ching-Yuan;Huang, Duen-Yi;Sekar, Ponarulselvam;Lin, Wan-Wan
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.257-272
    • /
    • 2022
  • In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.

Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1

  • Batbayar, Sainkhuu;Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.433-445
    • /
    • 2012
  • During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. ${\beta}$-Glucans are glucose polymers of a linear ${\beta}$(1,3)-glucan backbone with ${\beta}$(1,6)-linked side chains. The immunostimulatory and antitumor activities of ${\beta}$-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate ${\beta}$-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled ${\beta}$-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of ${\beta}$-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of ${\beta}$-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of ${\beta}$-glucan contributes to its immunostimulating effect in hosts and the potential uses of ${\beta}$-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of ${\beta}$-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens.

Molecular characterization and expression of a disintegrin and metalloproteinase with thrombospondin motifs 8 in chicken

  • Lee, Ra Ham;Lee, Seokhyun;Kim, Yu Ra;Kim, Sung-Jo;Lee, Hak-Kyo;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1366-1372
    • /
    • 2018
  • Objective: A disintegrin and metallopeptidase with thrombospondin motifs type 8 (ADAMTS8) is crucial for diverse physiological processes, such as inflammation, tissue morphogenesis, and tumorigenesis. The chicken ADAMTS8 (chADAMTS8) gene was differentially expressed in the kidney following exposure to different calcium concentrations, suggesting a pathological role of this protein in metabolic diseases. We aimed to examine the molecular characteristics of chADAMTS8 and analyze the gene-expression differences in response to toll-like receptor 3 (TLR3) stimulation. Methods: The ADAMTS8 mRNA and amino acid sequences of various species (chicken, duck, cow, mouse, rat, human, chimpanzee, pig, and horse) were retrieved from the Ensembl database and subjected to bioinformatics analyses. Reverse-transcription polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR) experiments were performed with various chicken tissues and the chicken fibroblast DF-1 cell line, which was stimulated with polyinosinic-polycytidylic acid (poly[I:C]; a TLR3 ligand). Results: The chADAMTS8 gene was predicted to contain three thrombospondin type 1 (TSP1) domains, whose amino acid sequences shared homology among the different species, whereas sequences outside the TSP1 domains (especially the amino-terminal region) were very dif­ferent. Phylogenetic analysis revealed that chADAMTS8 is evolutionarily clustered in the same clade with that of the duck. chADAMTS8 mRNA was broadly expressed in chicken tissues, and the expression was significantly up-regulated in the DF-1 cells in response to poly(I:C) stimulation (p<0.05). These results showed that chADAMTS8 may be a target gene for TLR3 signaling. Conclusion: In this report, the genetic information of chADAMTS8 gene, its expression in chicken tissues, and chicken DF-1 cells under the stimulation of TLR3 were shown. The result suggests that chADAMTS8 expression may be induced by viral infection and correlated with TLR3-mediated signaling pathway. Further study of the function of chADAMTS8 during TLR3-dependent inflammation (which represents RNA viral infection) is needed and it will also be important to examine the molecular mechanisms during different regulation, depending on innate immune receptor activation.

Expression of Toll-like Receptor 9 Increases with Progression of Cervical Neoplasia in Tunisian Women - A Comparative Analysis of Condyloma, Cervical Intraepithelial Neoplasia and Invasive Carcinoma

  • Fehri, Emna;Ennaifer, Emna;Ardhaoui, Monia;Ouerhani, Kaouther;Laassili, Thalja;Rhouma, Rahima Bel Haj;Guizani, Ikram;Boubaker, Samir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6145-6150
    • /
    • 2014
  • Toll-like receptors (TLRs) are expressed in immune and tumor cells and recognize pathogen-associated molecular patterns. Cervical cancer (CC) is directly linked to a persistent infection with high risk human papillomaviruses (HR-HPVs) and could be associated with alteration of TLRs expression. TLR9 plays a key role in the recognition of DNA viruses and better understanding of this signaling pathway in CC could lead to the development of novel immunotherapeutic approaches. The present study was undertaken to determine the level of TLR9 expression in cervical neoplasias from Tunisian women with 53 formalin-fixed and paraffin-embedded specimens, including 22 samples of invasive cervical carcinoma (ICC), 18 of cervical intraepithelial neoplasia (CIN), 7 of condyloma and 6 normal cervical tissues as control cases. Quantification of TLR9 expression was based on scoring four degrees of extent and intensity of immunostaining in squamous epithelial cells. TLR9 expression gradually increased from CIN1 (80% weak intensity) to CIN2 (83.3% moderate), CIN3 (57.1% strong) and ICC (100% very strong). It was absent in normal cervical tissue and weak in 71.4% of condyloma. The mean scores of TLR9 expression were compared using the Kruskall-Wallis test and there was a statistical significance between normal tissue and condyloma as well as between condyloma, CINs and ICC. These results suggest that TLR9 may play a role in progression of cervical neoplasia in Tunisian patients and could represent a useful biomarker for malignant transformation of cervical squamous cells.

Ribosomal Protein L19 and L22 Modulate TLR3 Signaling

  • Yang, Eun-Jeong;Seo, Jin-Won;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • Background: Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) and induces inflammation. In this study we attempted to ascertain if there are endogenous host molecules controlling the production of cytokines and chemokines. Two candidates, ribosomal protein L19 and L22, were analyzed to determine if they influence cytokine production followed by TLR3 activation. In this study we report that L19 acts upon production of IP-10 or IL-8 differently in glioblastoma cells. Methods: L19 or L22 was transfected into HEK293-TLR3, A549 or A172 cells. After treatment with several inhibitors of NF-${\kappa}B$, PI3K, p38 or ERK, production of IL-8 or IP-10 was measured by ELISA. siRNA was introduced to suppress expression of L19. After Vesicular stomatitis virus infection, viral multiplication was measured by western blot. Results: L19 increased ERK activation to produce IL-8. In A172 cells, in which TLR3 is expressed at endosomes, L19 inhibited interferon regulatory factor 3 (IRF3) activation and IP-10 production to facilitate viral multiplication, whereas L19 inhibited viral multiplication in A549 cells bearing TLR3 on their cell membrane. Conclusion: Our results suggest that L19 regulates TLR3 signaling, which is cell type specific and may be involved in pathogenesis of autoimmune diseases and chronic inflammatory diseases.

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.

Aloe-emodin inhibits Pam3CSK4-induced MAPK and NF-κB signaling through TLR2 in macrophages

  • Lee, Mi Jin;Park, Mi-Young;Kim, Soon-Kyung
    • Journal of Nutrition and Health
    • /
    • v.49 no.4
    • /
    • pp.241-246
    • /
    • 2016
  • Purpose: Aloe-emodin (AE), an ingredient of aloe, is known to exhibit anti-inflammatory activities. However, little is known about the underlying molecular mechanisms of its inflammatory modulatory activity in vitro. In the present study, we investigated the anti-inflammatory potential of AE using $Pam_3CSK_4$-stimulated macrophages. Methods: RAW 264.7 macrophages were treated with AE (0~20 mM) for 1 h, followed by treatment with $Pam_3CSK_4$ for 1 h. After incubation, mRNA expression levels of cytokines were measured. The effect of AE on TLR2-related molecules was also investigated in $Pam_3CSK_4$-stimulated RAW 264.7 macrophages. Results: AE attenuated $Pam_3CSK_4$-stimulated expression of proinflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and interleukin-$1{\beta}$ ($IL-1{\beta}$) in RAW 264.7 macrophages. Two concentrations of AE ($10{\mu}M$ and $20{\mu}M$) effectively reduced mRNA expression of TLR2 by 41.18% and 54.43%, respectively, compared to that in control cells (p < 0.05). AE also decreased nuclear factor-kappa B ($NF-{\kappa}B$) activation and mitogen-activated protein kinase (MAPK) phosphorylation. Phosphorylation levels of ERK1/2, p38, and JNK were markedly reduced by $20{\mu}M$ AE. In particular, AE decreased phosphorylation of ERK in a dose-dependent manner in $Pam_3CSK_4$-stimulated RAW 264.7 macrophages. Conclusion: Our data indicate that AE exerts its anti-inflammatory effect by suppressing TLR2-mediated activation of $NF-{\kappa}B$ and MAPK signaling pathways in macrophages.