• Title/Summary/Keyword: toll-like receptor 3 signaling

Search Result 88, Processing Time 0.026 seconds

Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il;Youn, Hyung-Sun
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1294-1298
    • /
    • 2008
  • Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines

  • Seo, Jin-Won;Yang, Eun-Jeong;Kim, Se Hoon;Choi, In-Hong
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.696-701
    • /
    • 2015
  • Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA. It stimulates pro-inflammatory cytokine and interferon production. Here we reported the expression of a novel isoform of TLR3 in human astrocyte cell lines whose message is generated by alternative splicing. The isoform represents the N-terminus of the protein. It lacks many of the leucine-rich repeat domains, the transmembrane domain, and the intracellular Toll/interleukin-1 receptor domain of TLR3. Type I interferons (interferon-α and interferon-β) induced the expression of this isoform. Exogenous overexpression of this isoform inhibited interferon regulatory factor 3, signal transducers and activators of transcription 1, and Inhibitor of kappa B α signaling following stimulation. This isoform of TLR3 also inhibited the production of chemokine interferon-γ-inducible protein 10. Our study clearly demonstrated that the expression of this isoform of TLR3 was a negative regulator of signaling pathways and that it was inducible by type I interferons. We also found that this isoform could modulate inflammation in the brain.

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.516-520
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

Fiber Type Specific Expression of Toll-like Receptor4, IL-6, TNF-α, and Suppressor of Cytokine Signaling-3 after Acute Exercise in Rat Skeletal Muscles (일회성 유산소운동 후 쥐의 골격근에서 toll-like receptor4, IL-6, TNF-α 및 suppressor of cytokine signaling-3의 근섬유 형태 특이적 발현)

  • Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1259-1265
    • /
    • 2011
  • The purpose of this study was to determine whether a single bout of aerobic exercise affects the expression level of toll-like receptor4 (TLR4), IL-6, TNF-${\alpha}$, and suppressor of cytokine signaling-3 (SOCS-3) expression in rat hindlimb muscles depending on fiber types. To accomplish this, thirteen 7-wk Balb/c male mice were randomly assigned to an experimental group or a control group. The exercise protocol consisted of a single bout of treadmill exercise (inclination $10^{\circ}$, speed 17 cm/sec 10 min, 33 cm/sec 10 min, 50 cm/sec) and the animals were killed 24 hr after the exhaustion protocol. The level of TLR4, IL-6, TNF-${\alpha}$, and SOCS-3 mRNA expression was measured by quantitative real-time PCR in soleus and plantaris muscles. A single bout of aerobic treadmill exercise increased TLR4 mRNA expression in the soleus muscle (p<0.05), whereas plantaris TLR4 mRNA expression did not change. Additionally, acute exercise led to a significant increase in IL-6, TNF-${\alpha}$, and SOCS-33 mRNA in the soleus muscle, while transcripts of these genes were not affected by exercise in the plantaris muscle. In conclusion, expression level of several immune-related genes such as TLR4, cytokines, and SOCS-3 is regulated by acute exercise in a fiber type specific manner.

Effect of Germinated Brown Rice on LPS-Induced Inflammation in Adipocytes (발아현미가 LPS로 유도된 지방세포의 염증반응에 미치는 영향)

  • Park, Mi-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Germinated brown rice (GBR, Orysa sartiva L.) has been reported to have anti-obesity and anti-inflammatory effects. However, the mechanisms underlying these effects in adipocytes are not fully understood. Therefore, this study was conducted to explore the anti-inflammatory mechanisms of GBR on lipopolysaccharide (LPS)-stimulated 3T3-L1 adipocytes. 3T3-L1 adipocytes were pretreated with GBR extracts (0-20 mg/mL) 1 h before LPS stimulation. The mRNA expression of adipokines and Toll-like receptor 4 (TLR4) were measured by RT-PCR. The protein expressions of TLR4-related molecules were detected by western blotting and nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) activation was measured. Our results showed that GBR extract dose-dependently inhibited mRNA expression of LPS-induced tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). GBR extract was found to inhibit LPS-induced mRNA expression of TLR4 and protein expression of both myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factor 6 (TRAF6). Furthermore, GBR extract significantly inhibited extracellular receptor-activated kinase (ERK) phosphorylation and $NF-{\kappa}B$ activation. These results suggest that GBR extract has the anti-inflammatory effects on LPS-induced inflammation via inhibition of TLR4 signaling, includingthe ERK and $NF-{\kappa}B$ signaling pathways, in adipocytes.

Anti-Inflammatory Properties of Aloe-Emodin in Adipocytes through a TLR4/NF-κB/ERK Signaling Pathway (지방세포에서 TLR4/NF-κB/ERK 신호조절을 통한 Aloe-Emodin의 염증 억제 효과)

  • Park, Mi-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.312-318
    • /
    • 2017
  • Aloe-emodin (AE) is the major bioactive component in aloe and known to exhibit anti-inflammatory activities. However, it has not been elucidated whether its anti-inflammatory potency can contribute to the elimination of obesity. The aim of the current study is to investigate the effect of AE on toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. 3T3-L1 adipocytes were treated with AE ($0-20{\mu}M$) for one hour, followed by LPS treatment for 30 min and then, adipokine mRNA expression levels were measured. Next, TLR4-related molecules were measured in LPS-stimulated 3T3-L1 adipocytes. AE significantly decreased the mRNA expression of the tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) in a dose-dependent manner. Moreover, AE suppressed TLR4 mRNA expression. Further study showed that AE could suppress the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) and phosphorylation of extracellular receptor-activated kinase (pERK). The results of this study suggest that AE directly inhibits $TLR4/NF-{\kappa}B/ERK$ signaling pathways and decreases the inflammatory response in adipocytes.

Regulation of Chicken FABP4 Transcription by Toll-Like Receptor 3 Activation in DF-1 Cells

  • Jae Rung So;Sujung Kim;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.283-291
    • /
    • 2023
  • Long-chain fatty acids (LCFAs) are vital in cellular compartments, primarily regulating lipid metabolism. Fatty Acid-Binding Proteins (FABPs) facilitate LCFA transport, lipid synthesis, storage, and act as signaling molecules influencing various pathways, including inflammation. FABP4, in particular, is linked to vascular and cardio-related diseases, and it plays a role in macrophage-mediated inflammatory responses. Previous studies have identified FABP4 as not only a representative biomarker for lipogenesis but also as having correlations with immune responses. This study aims to investigate the regulation of the chicken FABP4 (chFABP4) gene by toll-like receptor 3 (TLR3) activation and determine the signaling pathways that are involved in chFABP4 transcriptional regulation. We analyzed the transcriptional regulation of chFABP4 in TLR3-stimulated DF-1 cells. The results showed that chFABP4 was up-regulated upon stimulation with polyinosinic-polycytidylic acid (PIC), a TLR3 ligand. Notably, chFABP4 transcription was independently regulated in the NF-κB signaling pathway. It was up-regulated in p38 inhibition, demonstrating that the p38 signaling pathway might suppress the transcription of chFABP4 within TLR3-activated DF-1 cells. In contrast, chFABP4 expression was down-regulated in JNK signaling pathway inhibition, suggesting the positive regulation of JNK signaling pathway for chFABP4 transcription in DF-1 cells in response to TLR3 activation, consistent with findings in macrophages. MEK pathway inhibition resulted in a similar regulation to NF-κB signaling. These results suggest that each MAPK contributes differentially to the transcriptional regulation of chFABP4 by in DF-1 cells in response to TLR3 activation.

Anti-cancer and Anti-inflammatory Effects of Curcumin by the Modulation of Toll-like Receptor 2, 3 and 4 (Toll-like receptor 2, 3, 4의 신호전달체계 조절을 통한 curcumin의 항암${\cdot}$항염증 효과)

  • Kang, Soon-Ah;Hwang, Daniel;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • Toll-like receptors induce innate immune responses recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns (PAMPs). Ligand-induced homotypic oligomerization was found to proceed in LPS-induced activation of TLR4 signaling pathways. TLR2 is known to heterodimerize with TLR1 or TLR6 and recognize diacyl- or triacyl-lipopeptide, respectively. These results suggest that ligand-induced receptor dimerization of TLR4 and TLR2 is required for the activation of downstream signaling pathways. Therefore, receptor dimerization may be one of the first lines of regulation in the activation of TLR-mediated signaling pathways and induction of subsequent innate and adaptive immune responses. Here, we report biochemical evidence that curcumin from the plant Curcuma longa inhibits activation of $NF-{\kappa}B$, expression of COX-2, and dimerization of TLRs induced by TLR2, TLR3 and TLR4 agonists. These results imply that curcumin can modulate the activation of TLRs and subsequent immune/inflammatory responses induced by microbial pathogens.