• Title/Summary/Keyword: tofu whey

Search Result 13, Processing Time 0.024 seconds

Characteristics of Amino Acid Fortified Tofu Manufactured by Coprecipitation of Whey and Soybean Proteins (유청(乳淸)과 대두(大豆) 단백질(蛋白質) 공동침전(共同沈澱)에 의해 제조(製造)된 아미노산 강화두부(强化豆腐)의 특성(特性))

  • Wee, Jae-Joon;Lee, Hyong-Joo
    • Applied Biological Chemistry
    • /
    • v.26 no.4
    • /
    • pp.205-210
    • /
    • 1983
  • To investigate the characteristics of amino acid fortified tofu manufactured by coprecipition of cheese whey and soybean proteins, experimental tofus were made from various mixtures of whey, whey powder, and soy milk, and general and amino acid compositions and physical properties were analyzed. Physical characteristics such as elasticity, hardness, and brittleness of the whey-soybean tofu were very similar to those of traditional tofu but color of the whey-soybean tofu was lighter than that of soybean tofu. The contents of total solids and protein of traditional tofu were about 19% and 13%, respectively, while those of the whey-soy bean tofus were 17.3%$\sim$18.1% and 10.9$\sim$11.3%, respectively. The 5$\sim$15% of lactose in whey-soymilk mixture was transferred into the tofus. The Content of sulfur-bearing amino acids in the fortified tofu from 3 : 1 mixture of whey and soymilk was 3.8g/100g protein which indicated about 50% fortification of the amino acids as compared to the traditional tofu which contained 2. 54g/100g protein of the sulfur-bearing amino acids.

  • PDF

Evaluation of Physicochemical Properties of Jeungpyun Prepared with Membrane-filtered Tofu Whey Concentrates

  • Joo, Sin-Youn;Choi, Min-Hee;Jung, Jin-Young;Kim, Woo-Jung;Chung, Hai-Jung
    • Food Quality and Culture
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • This study examined the quality characteristics of Jeungpyun prepared with different additions of nano-filtered (NF) tofu whey concentrates. The initial pH values of the Jeungpyun batters ranged from 5.64 to 5.78, and decreased to 4.77-4.98 after 4 hours of fermentation at $35^{\circ}C$. The volume and specific volume values of the control Jeungpyun were lower than those of Jeungpyun samples prepared with 1%, 2%, and 3% NF powder. The color of the Jeungpyun became increasingly greenish-yellow as the NF powder level increased. Hardness and brittleness decreased with increasing NF powder content, while cohesiveness and springiness were not significantly different. Sensory evaluations revealed that as the level of NF powder increased, takju smell and sourness increased, but no significant differences were observed for sweetness and moistness between the control and NF powder groups. In terms of overall acceptability, the results revealed that Jeungpyun can be prepared with up to 1% NF powder in place of rice powder and be deemed as acceptable as a control Jeungpyun product.

  • PDF

Texture and Storage Stability of Tofu Incorporated with Rhynchosia volubilis

  • Lee, Jun-Ho;Ahn, Mi-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.1
    • /
    • pp.71-75
    • /
    • 2009
  • The effects of Rhynchosia volubilis (yakong) incorporation (0%, 10%, 20%, and 30%, w/w of soybeans) on quality and shelf life of tofu were investigated. Moisture content of tofu increased slightly with the increase in the level of yakong incorporation from 10% to 30% and no apparent relationships between yakong incorporation and the yield were found. Turbidity of soybean whey tended to increase with increased level of yakong incorporation where the values of 20% and 30% samples were significantly different from those of control and 10% sample (p<0.05). The different levels of yakong incorporation were found to have significant influence (p<0.05) on all the color characteristics of tofu. Tofu texture varied with the level of yakong incorporation in consistent pattern; however, there was no significant difference (p>0.05) in most cases. Tofu incorporated with yakong ($10{\sim}30%$) had a shelf life of above at least 1 day longer than that of the control tofu.

Quality Characteristics of Tofu Prepared with Lycii fructus Powder during Storage (구기자 분말을 첨가한 두부의 저장 중 품질특성)

  • Park, Bock-Hee;Koh, Kyeong-Mi;Jeon, Eun-Raye
    • Korean journal of food and cookery science
    • /
    • v.26 no.5
    • /
    • pp.586-595
    • /
    • 2010
  • This study was conducted to examine the quality characteristics of tofu prepared with Lycii fructus powder(LFP) during storage for 15 days at $5{\pm}1^{\circ}C$. The moisture content, yield rate, tofu whey content and turbidity of soaking solutions of tofu prepared with LFP increased upon the addition of LFP. The pH of tofu prepared with LFP decreased while the acidity increased lightly; however, the acidity of the tofu did not differ significantly according to the level of added LFP. The L value of tofu decreased as the amount of LFP in the formulation increased, whereas the a and b values increased. The color value of tofu prepared with LFP did not depend upon the storage period. The hardness increased significantly with the level of LFP, but it did not differ significantly according to the storage period. The microbial count of tofu prepared with LFP was lower than that of control tofu during the storage period. In terms of overall preference, the preferred tofu contained 1.0% LFP tofu.

Textural and Organoleptic Properties of Tofu Manufactured with Micronized Full-fat Soyflour Fortified with Food Ingredients

  • Shim, Jae-Jin;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.278-283
    • /
    • 2003
  • Textural properties of tofu manufactured with micronized full-fat soyflour (MFS) were enhanced by the addition of soy protein isolate, whey protein concentrate, chitosan oligosaccharide and mushroom powder. The MFS solution (14.2% solid content) was converted to semi-solid tofu by a two-stage heat treatment with the addition of 4% coagulant mix. The MFS tofu was evaluated by a compression test as well as sensory evaluation. To produce the semi-solid gel (MFS tofu) with reasonably high strength and toughness, the MFS solution with 14.2% solid content and 7.0% protein had to be heat treated at 121$^{\circ}C$ for 3min. The relative toughness of MFS tofu was increased by the addition of SPI, showing a 144% increase. The toughness of MFS tofu prepared with the MFS/SPI mixture was greatly increased by the addition of WPC at the level of 0.7% and the water separation from MFS tofu was greatly reduced. Furthermore, the toughness and strength of MFS/SPI tofu was enhanced by the addition of 0.1% chitosan oligosaccharide and 0.2% mushroom powder. The sensory evaluation of the tofu fortified with SPI, chitosan oligosaccharide and mushroom powder was superior to that of MFS tofu, with a higher score for overall preference.

Effects of Added WPC and WP on the Quality and Shelf Life of Tofu (WPC 및 WP 첨가가 두부 품질 및 저장성에 미치는 영향)

  • Kim, Jong-Un;Song, Kwang-Young;Seo, Kun-Ho;Yoon, Yoh-Chang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.93-109
    • /
    • 2012
  • This study was performed to investigate the effects of added whey protein concentrates (WPC) and whey powder (WP) on the quality and shelf life of Tofu, a traditional food in Korea. Combined whey powder and whey protein concentrates were obtained at drainage after the casein was separated by using rennet enzyme or acidification of milk. We manufactured whey Tofu and evaluated its nutritional quality by testing, the general composition for yield, moisture, pH, crude protein, crude fat, carbohydrate, rheology, sensory properties, and change during storage. 1. The general compositions of WPC and WP were as follows: (a) WPC: moisture, 5.9%; crude protein, 56.2%; crude fat, 0.1%; carbohydrate, 32.6%; ash, 5.2%; and pH 5.93 and (b) WP: moisture, 3.7%; crude protein, 13.2%; crude fat, 1.6%; carbohydrate, 74.4%; ash, 7.1%; and pH, 6.65. 2. The yield of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=8:2 and (b) in WP, 2% addition was the highest (265%) at $13.3g/cm^2$, but with 4% addition WP was the lowest (184%) at $22.2g/cm^2$. 3. The moisture content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL = 6:4 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=8:2 and (b) in WP, 2% addition was the highest at 79.82% ($13.3g/cm^2$), but 4% was the lowest at 75.18% ($22.2g/cm^2$). 4. The pH of Tofu was as follows: (a) in WPC, the value was WPC 6% > WPC 4% > WPC 2% > control and $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 and (b) in WP, WP 4% > WP 2% > control. 5. The ash content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 and (b) in WP, there was no difference between 2% and 4% addition. 6. The crude protein content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=6:4 and (b) in WP, there was no difference between 2% and 4% addition. 7. The crude fat content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=6:4 and (b) in WP, values decreased with increasing pressed weight. 8. The carbohydrate content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 and (b) in WP, values increased with increasing pressed weight. 9. The rheology test results of Tofu were as follows: (a) in WPC, hardness and brittleness was highest with $CaCl_2$:GDL=8:2 and 6% added WPC. Cohesiveness was highest with $CaCl_2$:GDL=6:4 and 2% added WPC. Elasticity was the highest with $CaCl_2$:GDL=7:3 and the added WPC control. (b) in WP, hardness was the highest with $22.2g/cm^2$ and added WP control. Cohesiveness was the highest with $17.8g/cm^2$ and added WP 2%. Elasticity was the highest with $17.8g/cm^2$ and added WP 4%. Brittleness was the highest with $17.8g/cm^2$ and added WP control. 10. The sensory test results of Tofu were as follows: (a) in WPC, the texture, flavor, color, and smell were the highest with $CaCl_2$:GDL=6:4 and 6% added WPC. (b) in WP, the texture was the highest in the control with $22.2g/cm^2$. Flavor and smell were the highest in WP 2% and $22.2g/cm^2$. Color was the highest in WP 2% and $17.8g/cm^2$. 11. The quality change of Tofu during storage was as follows: (a) in WPC, after 60 h, all samples began to get spoiled and their color changed, and mold began to germinate. (b) in WP, the result was similar, but the rate of spoilage was more rapid than that in the control.

  • PDF

The effect of Green tea powder levels on Storage Chracteristics of Tofu (녹차가루 첨가 두부의 저장 특성)

  • 정지영;조은자
    • Korean journal of food and cookery science
    • /
    • v.18 no.2
    • /
    • pp.129-135
    • /
    • 2002
  • The effects of adding green tea powder on the quality and storage characteristics of tofu were studied. As the addition of green tea powder increased, the moisture content of tofu was decreased but those of crude protein and the crude ash were increased. The addition of green tea powder increased the production of whey and consequently decreased the yield of tofu. At the beginning of storage, the pH of the tofu with green tea powder was increased, but decreased rapidly at the eighth day of storage. The pH of tofu-soaking solution was decreased during the storage period. The L and b values showed no significant changes but a value was increased during storage. Textural characteristics of tofu added with green tea powder also did not show significant changes during storage. Although the total plate counts and absorbances of soaking solution of tofu were increased during storage, the samples with 1.0% green tea powder had the lowest TPC (3.0$\times$10$\^$6/ CFU/ml) and the lowest absorbance (0.175) at the eighth day of storage.

Stability of Protein Colloids in the Mixture of Cheese Whey and Soy Milk (유청(乳淸) 및 두유(豆乳) 혼합액에서의 단백질 콜로이드 안정성)

  • Shon, Dong-Hwa;Lee, Hyong-Joo
    • Applied Biological Chemistry
    • /
    • v.29 no.1
    • /
    • pp.83-89
    • /
    • 1986
  • To investigate effectors on the colloidal stability of whey and soybean proteins, characteristics of tofu-gel formation, effects of heat treatment and salt composition on the colloidal stability, and effects of heat treatment on storage stability were analyzed. When experimental tofus were made from the mixture of whey and soybean, the calcium in the whey precipitated the soy proteins, and disrupted the gel formation, which resulted in the curd of poor texture. In the heat treatment at $60{\sim}100^{\circ}C$, whey and the whey proteins dialyzed against distilled water were readily preciptated at over $70^{\circ}C$, but the mixture of whey and soy extract as well as soy extract were stable at the range of temperature. The proteins of soy extract, whey dialyzed against sodium phosphate buffer, and the mixture were stable at the same heat treatment, and this suggested that phosphates in the soy extract stabilize specialty the whey proteins. Soy proteins were easily destabilized by adding $CaCl_2(0.05{\sim}0.07M)$ at $80{\circ}C$ and $70{\sim}85%$ of the proteins in soy extract and the mixture were preciptated, while only $30{\sim}55%$ of the proteins in whey dialyzed against distilled water were destabilized at the same conditions. Storage stability at $4^{\circ}C$ of the mixture was increased when the mixture was treated at $63^{\circ}C$ and lower temperature.

  • PDF

The Basic Study of Cheong-song Mineral Water for Tofu Coagulant (청송약수를 이용한 두부응고에 관한 기초연구)

  • Lee, Sung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.286-292
    • /
    • 2009
  • This is the basic study of Cheong-song mineral waters(Dalgi and Sinchon) for a coagulant of Tofu. For comparison, $CaCl_2,\;CaSO_4,\;MgCl_2\;and\;MgSO_4$ are used as reference coagulants. The coagulability test was conducted by measuring the percentage transmittancy of filtered whey solution at 600 nm wavelength, in $80\;{^{\circ}C}$ and 10 mL of solution volume which composed of 2 mL of soy milk and coagulants. The coagulability test of mineral waters require more than an aliquot of 8 mL. Good result obtained by adding 0.4, 1, 0.8, 0.8 mL of reference coagulants and this is equivalent to the amount of 66.14, 232.83, 95.68, 78.88 mg of Ca and Mg respectively. The percentage transmittancy of filtered whey solution with added 8 mL of Dalgi and Sinchon mineral waters showed 50.74 and 58.52 respectively and the amount of mineral content of Ca and Mg equivalent to 2.41 and 2.48 mg respectively which is very lower value than the reference coagulants. This means mineral water has coagulation ability even in the low concentration.

Quality Characteristics of Cuttlefish Inky Tofu Prepared with Various Coagulants (응고제에 따른 오징어 먹물 두부의 품질 특성)

  • Park, Eo-Jin;An, Sang-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.6
    • /
    • pp.653-660
    • /
    • 2006
  • Some quality characteristics of tofu prepared with cuttlefish ink were investigated to study the effects of various of coagulants. Each concentration of coagulant was determined as 0.2% of GDL, 0.3# of $MgCl_2$, 1%^ of $CaCl_2$, 1.5% of $CaSO_4$ and 0.6% D-gluconic acid calcium by pre-experiment. Also, the optimum concentration of added cuttlefish ink was chosen as 3%(diluted in twenty times). The yield of inky tofu prepared with GDL as coagulant was the highest. According to prepared with $MgCl_2$ was the highest. The result of microstructure was examined by SEM, the particles of inky tofu coagulated with GDL and D-gluconic acid calcium were small and uniformity. In overall acceptability of sensory properties, inky tofu coagulated with GDL was the highest in score. In the color of inky tofu, L value and a value were the highest coagulated with GDL, but that coagulated with $CaCl_2$ had the highest b value. In the texture properties of inky tofu, hardness, gumminess and brittleness were the highest coagulated with D-gluconic acid calcium. A positive correlation was observed between the pH of tofu whey and acidity. Sensory properties of roasted nutty flavor, hardness, cohesiveness and springiness were positively correlated with the acceptability.