• 제목/요약/키워드: tobamoviruses

검색결과 25건 처리시간 0.025초

Characterization of Hibiscus Latent Fort Pierce Virus-Derived siRNAs in Infected Hibiscus rosa-sinensis in China

  • Lan, Han-hong;Lu, Luan-mei
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.618-627
    • /
    • 2020
  • Although limited progress have been made about pathogen system of Hibiscus rosa-sinensis and Hibiscus latent Fort Pierce virus (HLFPV), interaction between plant host and pathogen remain largely unknown, which led to deficiency of effective measures to control disease of hibiscus plants caused by HLFPV. In this study, infection of HLFPV in Hibiscus rosa-sinensis was firstly confirmed for the first time by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods in China (HLFPV-Ch). Sequence properties analyzing suggested that the full-length sequences (6,465 nt) of HLFPV-Ch had a high sequence identity and a similar genomic structure with other tobamoviruses. It includes a 5'-terminal untranslated region (UTR), followed by four open reading frames encoding for a 128.5-kDa replicase, a 186.5-kDa polymerase, a 31-kDa movement protein, 17.6-kDa coat protein, and the last a 3'-terminal UTR. Furthermore, HLFPV-Ch-derived virus-derived siRNAs (vsiRNAs) ant its putative target genes, reported also for the first time, were identified and characterized from disease Hibiscus rosa-sinensis through sRNA-seq and Patmatch server to investigate the interaction in this pathogen systems. HLFPV-Ch-derived vsiRNAs demonstrated several general and specific characteristics. Gene Ontology classification revealed predicted target genes by vsiRNAs are involved in abroad range of cellular component, molecular function and biological processes. Taken together, for first time, our results certified the HLFPV infection in China and provide an insight into interaction between HLFPV and Hibiscus rosa-sinensis.

Biological and Molecular Characterization of Tomato brown rugose fruit virus (ToBRFV) on Tomato Plants in the State of Palestine

  • Jamous, Rana Majed;Zaitoun, Salam Yousef Abu;Mallah, Omar Bassam;Ali-Shtayeh, Mohammed Saleem
    • 식물병연구
    • /
    • 제28권2호
    • /
    • pp.98-107
    • /
    • 2022
  • The incidence of Tomato brown rugose fruit virus (ToBRFV) and biological and molecular characterization of the Palestinian isolates of ToBRFV are described in this study. Symptomatic leaf samples obtained from Solanum lycopersicum L. (tomatoes) and Nicotiana tabacum L. (cultivated tobacco) plants were tested for tobamoviruses infection by reverse transcription polymerase chain reaction. Tomato leaf samples collected from Tulkarm and Qalqilia are infected with ToBRFV-PAL with an infection rate of 76% and 72.5%, respectively. Leaf samples collected from Jenin and Nablus were found to be mixed infected with ToBRFV-PAL and Tobacco mosaic virus (TMV) (100%). Sequence analysis of the ToBRFV-PAL genome showed that the net average nucleotide divergence between ToBRFV/F48-PAL strain and the Israeli and Turkish strains was 0.0026398±0.0006638 (±standard error of mean), while it was 0.0033066±0.0007433 between ToBRFV/F42-PAL and these two isolates. In the phylogenetic tree constructed with the complete genomic sequence, all the ToBRFV isolates were clustered together and formed a sister branch with the TMV. The sequenced Palestinian isolates of ToBRFV-PAL shared the highest nucleotide identity with the Israeli ToBRFV isolate suggesting that the virus was introduced to Palestine from Israel. The findings of this study enhance our understanding of the biological and molecular characteristics of ToBRFV which would help in the management of the disease.

Transgenic cucumber expressing the 54-kDa gene of Cucumber fruit mottle mosaic virus is highly resistance and protect non-transgenic scions from soil infection

  • Gal-On, A.;Wolf, D.;Antignus, Y.;Patlis, L.;Ryu, K.H.;Min, B.E.;Pearlsman, M.;Lachman, O.;Gaba, V.;Wang, Y.;Yang. J.;Zelcer, A.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.148.2-149
    • /
    • 2003
  • Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms with yellow mottling on leaves and fruits, and occasionally severe wilting of cucumber plants. No genetic source of resistance against this virus has been identified. The genes coding for the coat protein or the putative 54-kDa replicase were cloned into binary vectors under control of the SVBV promoter. Agrobacterium-mediated transformation was peformed on cotyledon explants of a parthenocarpic cucumber cultivar with superior competence for transformation. R1 seedlings were evaluated for resistance to CFMMV infection by lack of symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, 8 exhibited immunity, while only 3 resistant lines were found among a total of 9 CP-containing lines. Line 144 homozygous for the 54-kDa replicase was selected for further resistance analysis. Line 144 was immune to CFMMV infection by mechanical and graft inoculation, or by root infection following planting in CFMMV-contaminated soil. Additionally, line 144 showed delay of symptom appearance following infection by other cucurbit-infecting tobamoviruses. Infection of line 144 plants with various potyviruses and cucumber mosaic cucumovirus did not break the resistance to CFMMV. The mechanism of resistance of line 144 appears to be RNA-mediated, however the means is apparently different from the gene silencing phenomenon. Homozygote line 144 cucumber as rootstock demonstrated for the first time protection of a non-transformed scion from soil inoculation with a soil borne pathogen, CFMMV.

  • PDF

Characterization and sequence analysis of half of genome RNA of a new Tobamovirus (Cactus mild mottle virus) from cultivated cactus plants in Korea

  • B.E. Min;B.N. Chung;Park, J.Y.;K.H. Ryu
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.114.1-114
    • /
    • 2003
  • A new isolate of rod-shaped virus was identified from grafted cactus, Gymnocalycium mihanovichii grafted onto Hylocereus trigonus, in Korea. The virus proved to be a new Tobamovirus and called previously as Tobamovirus-Ca for which we suggest the name Cactus mild mottle virus(CMMoV), because it produced systemic mild mosaic symptoms on its original host. CMMoV is distantly related to known species of the genus Tobamovirus on the basis of host range, serological and sequence analyses. Western blot analysis showed that CMMoV is serologically unrelated to Summons' Opuntia virus which is the only known species of the genus found in cactus plants. The 3'-terminal 2,910 nucleotides have been sequenced for the virus. The coat protein (CP) and movement protein (MP) genes encode 161 and 306 amino acids residues, respectively. The nucleotide and amino acid sequences of the CP were 39.6 % to 49.2 % and 26.4 % to 40.3 % identical to other tobamoviruses, respectively. The MP and 3' noncoding region shared 16.3 % to 23.3 % and 44.6 % to 63.4 % identities, respectively, with the members of the genus. Phylogenetic tree analysis of the CP gene revealed that CMMoV clusters with members of subgroup I of Tobamovirus. CMMoV particles contained genomic RNA along with two subgenomic RNAs, and this characteristics is common in the members of the subgroup II. This is the first information of sequence and comparative analysis of a Tobamovirus that infects cactus.

  • PDF

감자 '추백' 에 발생한 Tobacco mosaic virus 의 특성 (Characterization of Tobacco mosaic virus Isolated fromSolanum tuberosum ‘Chubak’ in Korea)

  • 김정수;김재현;최국선;채수영;김현란;정봉남;최용문
    • 식물병연구
    • /
    • 제9권2호
    • /
    • pp.89-93
    • /
    • 2003
  • 남해지역의 원원종 종서 생산 포장에서 '추백' 품종에 나타난 엽맥투명 및 매우 약한 모자이크 증상을 나타내는 감자 잎에서 담배 모자이크 바이러스(TMV)를 분리하였다. 이 바이러스((TMV-St))는 생물학적, 혈청학적 유연관계 및 외피단백질의 염기서열 등을 통해 기존에 보고된 다른 tobamovires와 비교하였다. TMV-St는 5개의 지표식물 반응에서 토마토, 고추, 가지 등과 같은 가지과 작물에 경제적 피해를 주고 있는 TMV-U1, Pepper mild mottle virus(PMMoV) 및 Tomato mosaic virus(ToMV)와는 다른 기주 반응을 보였다. 특히 즙액접종에 의한 기주의 반응은 C.murale 접종엽과 상엽 모두에서 퇴록반점을 보였으며, C. murale, G. globosa, N.rustica 그리고 N. tabacum ce. Samsun nn 등 4가지 지표식물로 이들 바이러스 계통을 구분할 수 있었다. 혈청학적 검정에서 TMV-St는 TMV-U1, PMMoV 그리고 ToMV와의 반응에서 도두 뚜렷한 침강선을 형성하였다. TMV-St의 외피단백질은 477개의 염기서열로 되어 있으며, 이는 TMV-U1의 염기서열과 매우 유사하였다.