• Title/Summary/Keyword: titanium silicide

Search Result 44, Processing Time 0.018 seconds

The Formation of the Shallow Junction by RTD and Characteristic Analysis for $n^+$ -p Diode with Ti-silicide (고속 열 확산에 의한 얕은 접합 형성과 Ti-실리시이드화된 $n^+$ -p 다이오드 특성 분석)

  • 최동영;이성욱;주정규;강명구;윤석범;오환술
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.80-90
    • /
    • 1994
  • The ultra shallow junction was formed by 2-step RTP. Phosphorus solid source(P$_{2}O_{5}$) was transfered on wafer surface during RTG(Rapid Thermal Glass Transfer) of which process condition was 80$0^{\circ}C$ and 60sec. The process temperature and time of the RTD(Rapid Thermal Diffusion) were 950~105$0^{\circ}C$ during 5~15sec respectively sheet resistances were measured as 175~320$\Omega$/m and junction depth and dopth and dopant surface concentration were measured as 0.075~0.18$\mu$m and 5${\times}10^{19}cm^{4}$ respectively. Ti-silicide was formed by 2-step RTA after 300$\AA$ Titanium was deposited. The 1st RTA (2nd RTA) was carried out at the temperature of $600^{\circ}C$(700~80$0^{\circ}C$) for 30 seconds (10~60 seconds) under N$_2$ ambient. Sheet resistances after 2nd RTA were measured as 46~63$\Omega$/D. Si/Ti component ratio was evaulated as 1.6~1.9 from Auger depth profile. Ti-Silicided n-p junction diode (pattern size : 400$\times$400$\mu$m) was fabricated under the RTD(the process was carried out at the temperature of 100$0^{\circ}C$ for 10seconds) and 2nd RTA(theprocess was carried out at the temperature of 750$^{\circ}C$ for 60 seconds). Leakage current was measured 1.8${\times}10^{7}A/mm^{2}$ at 5V reverse voltage. Whent the RTD process condition is at the temperature of 100$0^{\circ}C$ for 10seconds and the 2nd RTA process condition is at the temperature of 75$0^{\circ}C$ for 60 seconds leakage current was 29.15${\times}10^{9}A$(at 5V).

  • PDF

Characteristic Studies on Electro-Discharge-Sintering of Ti5Si3 Powder Synthesized by Mechanical Alloying (기계적 합금화에 의해 제조된 Ti5Si3 분말의 전기방전소결 특성 연구)

  • Cheon, Yeon-wuk;Cho, Yu-jung;Kang, Tae-ju;Kim, Jung-yeul;Park, Jun-sik;Byun, Chang-sup;Lee, Sang-ho;Lee, Won-hee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.660-666
    • /
    • 2009
  • The consolidation of mechanical alloyed $Ti_5Si_3$ powder by electro-discharge-sintering has been investigated. A single pulse of 2.5 to 8.0 kJ/0.34 g was applied to each powder mixture using 300 and $450{\mu}F$ capacitors. A bulk-like solid with $Ti_5Si_3$ phase has been successfully fabricated by the discharge with an input energy of more than 2.5 kJ in less than $160{\mu}sec$. Micro-Vickers hardness was found to be higher than 1350, which is significantly higher than that of a conventional high temperature sintered sample. The formation of $Ti_5Si_3$ and consolidation occurred through a fast solid state diffusion reaction.

Effects of the Ge Prearmophization Ion Implantation on Titanium Salicide Junctions (게르마늄 Prearmophization 이온주입을 이용한 티타늄 salicide 접합부 특성 개선)

  • Kim, Sam-Dong;Lee, Seong-Dae;Lee, Jin-Gu;Hwang, In-Seok;Park, Dae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.812-818
    • /
    • 2000
  • We studied the effects of Ge preamorphization (PAM) on 0.25$\mu\textrm{m}$ Ti-salicide junctions using comparative study with As PAM. For each PAM schemes, ion implantations are performed at a dose of 2E14 ion/$\textrm{cm}^2$ and at 20keV energy using $^{75}$ /As+and GeF4 ion sources. Ge PAM showed better sheet resistance and within- wafer uniformity than those of As PAM at 0.257m line width of n +/p-well junctions. This attributes to enhanced C54-silicidation reaction and strong (040) preferred orientation of the C54-silicide due to minimized As presence at n+ junctions. At p+ junctions, comparable performance was obtained in Rs reduction at fine lines from both As and Ge PAM schemes. Junction leakage current (JLC) revels are below ~1E-14 A/$\mu\textrm{m}^{2}$ at area patterns for all process conditions, whereas no degradation in JLC is shown under Ge PAM condition even at edge- intensive patterns. Smooth $TiSi_2$ interface is observed by cross- section TEM (X- TEM), which supports minimized silicide agglomeration due to Ge PAM and low level of JLC. Both junction break- down voltage (JBV) and contact resistances are satisfactory at all process conditions.

  • PDF

Thermal Stability of Ti-Si-N as a Diffusion Barrier (Cu와 Si간의 확산방지막으로서의 Ti-Si-N에 관한 연구)

  • O, Jun-Hwan;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.215-220
    • /
    • 2001
  • Amorphous Ti-Si-N films of approximately 200 and 650 thickness were reactively sputtered on Si wafers using a dc magnetron sputtering system at various $N_2$/Ar flow ratios. Their barrier properties between Cu (750 ) and Si were investigated by using sheet resistance measurements, XRD, SEM, RBS, and AES depth profiling focused on the effect of the nitrogen content in Ti-Si-N thin film on the Ti-Si-N barrier properties. As the nitrogen content increases, first the failure temperature tends to increase up to 46 % and then decrease. Barrier failure seems to occur by the diffusion of Cu into the Si substrate to form Cu$_3$Si, since no other X- ray diffraction intensity peak (for example, that for titanium silicide) than Cu and Cu$_3$Si Peaks appears up to 80$0^{\circ}C$. The optimal composition of Ti-Si-N in this study is $Ti_{29}$Si$_{25}$N$_{46}$. The failure temperatures of the $Ti_{29}$Si$_{25}$N$_{465}$ barrier layers 200 and 650 thick are 650 and $700^{\circ}C$, respectively.ely.

  • PDF