• 제목/요약/키워드: tissue development

검색결과 2,392건 처리시간 0.032초

Effects of Three-dimensional Scaffolds on Cell Organization and Tissue Development

  • Yan Li;Yang, Shang-Tian
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권5호
    • /
    • pp.311-325
    • /
    • 2001
  • Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.

  • PDF

Involvement of lymphoid inducer cells in the development of secondary and tertiary lymphoid structure

  • Evans, Isabel;Kim, Mi-Yeon
    • BMB Reports
    • /
    • 제42권4호
    • /
    • pp.189-193
    • /
    • 2009
  • During development lymphoid tissue inducer (LTi) cells are the first hematopoietic cells to enter the secondary lymphoid anlagen and induce lymphoid tissue neogenesis. LTi cells induce lymphoid tissue neogensis by expressing a wide range of proteins that are associated with lymphoid organogenesis. Among these proteins, membrane-bound lymphotoxin (LT) $\alpha1\beta2$ has been identified as a critical component to this process. LT$\alpha1\beta2$ interacts with the LT$\beta$-receptor on stromal cells and this interaction induces up-regulation of adhesion molecules and production of chemokines that are necessary for the attraction, retention and organization of other cell types. Constitutive expression of LT$\alpha1\beta2$ in adult LTi cells can result in the formation of a lymphoid-like structure called tertiary lymphoid tissue. In this review, we summarize the function of fetal and adult LTi cells and their involvement in secondary and tertiary lymphoid tissue development in murine models.

New Insights Into Tissue Macrophages: From Their Origin to the Development of Memory

  • Italiani, Paola;Boraschi, Diana
    • IMMUNE NETWORK
    • /
    • 제15권4호
    • /
    • pp.167-176
    • /
    • 2015
  • Macrophages are the main effector cells of innate immunity and are involved in inflammatory and anti-infective processes. They also have an essential role in maintaining tissue homeostasis, supporting tissue development, and repairing tissue damage. Until few years ago, it was believed that tissue macrophages derived from circulating blood monocytes, which terminally differentiated in the tissue and unable to proliferate. Recent evidence in the biology of tissue macrophages has uncovered a series of immune and ontogenic features that had been neglected for long, despite old observations. These include origin, heterogeneity, proliferative potential (or self-renewal), polarization, and memory. In recent years, the number of publications on tissue resident macrophages has grown rapidly, highlighting the renewed interest of the immunologists for these key players of innate immunity. This minireview aims to summarizing the new current knowledge in macrophage immunobiology, in order to offer a clear and immediate overview of the field.

Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

  • Ko, Je Yeong;Oh, Sumin;Yoo, Kyung Hyun
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.169-177
    • /
    • 2017
  • Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.

Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation

  • Choi, Ji Won;Lim, Jun
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.524-529
    • /
    • 2016
  • Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.

Tissue-specific gene expression analysis of silkworm (Bombyx mori) by quantitative real-time RT-PCR

  • Park, Seung-Won;Kang, Seok-Woo;Goo, Tae-Won;Kim, Seong-Ryul;Lee, Gwang-Gill;Paik, Soon-Young
    • BMB Reports
    • /
    • 제43권7호
    • /
    • pp.480-484
    • /
    • 2010
  • The Bombyx mori Microarray Database (BmMDB; http://silkworm.swu.edu.cn/microarray) provides information for tissue-specific gene expression by using the whole-genome oligonucleotide microarray in the silkworm. We analyzed the tissue-specific expression patterns in the silk gland, fat body, and midgut five days of fifth instar larvae during the development of B. mori. To verify the tissue-specific expression, analysis was conducted using quantitative Real-time RT-PCR and the highly expressed endogenous Actin RNA as an intrinsic reference. Finally, we confirmed five genes, (sw15872, sw00692, sw20990, sw05300,and sw2250), out of 18 candidates expressed in two different tissues, which was consistent with the data published by Dr. Xiang's group, thereby supporting the BmMDB. Further studies for promoter regions of candidate genes can be applied in creating transgenic silkworms as biomedical insects for use in producing biomaterials, and to serve as well-characterized models for understanding the mechanism for the genetic regulation of tissue-specific development.

The role of autophagy in cell proliferation and differentiation during tooth development

  • Ji-Yeon Jung;Shintae Kim;Yeon-Woo Jeong;Won-Jae Kim
    • International Journal of Oral Biology
    • /
    • 제48권4호
    • /
    • pp.33-44
    • /
    • 2023
  • In this review, the regulatory mechanisms of autophagy were described, and its interaction with apoptosis was identified. The role of autophagy in embryogenesis, tooth development, and cell differentiation were also investigated. Autophagy is regulated by various autophagy-related genes and those related to stress response. Highly active autophagy occurrences have been reported during cell differentiation before implantation after fertilization. Autophagy is involved in energy generation and supplies nutrients during early birth, essential to compensate for their deficient supply from the placenta. The contribution of autophagy during tooth development, such as the shape of the crown and root formation, ivory, and homeostasis in cells, was also observed. Genes control autophagy, and studying the role of autophagy in cell differentiation and development was useful for understanding human aging, illness, and health. In the future, the role of specific mechanisms in the development and differentiation of autophagy may increase the understanding of the pathological mechanisms of disease and development processes and is expected to reduce the treatment of various diseases by modulating the autophagic phenomenon.

Tissue- and maturity-dependent expression pattern of androgen receptor mRNA in goldfish, Carassius auratus

  • Choi, Cheol-Young;Kim, Soon-Hag;Kim, Bong-Seok
    • Journal of fish pathology
    • /
    • 제16권2호
    • /
    • pp.111-118
    • /
    • 2003
  • Androgen plays an important role in the regulation of gonadotropin production in vertebrates . We have investigated the transcriptional pattern of androgen receptor (AR) in a variety of tissues in maturing male and female goldfish by RT-PCR. Specific primer for AR was designed based on goldfish AR gene from the GenBank (accession number AY090897). AR was shown 10 be maturity- and tissue-dependent gene expression pattern in goldfish. In immature male goldfish, significantly higher transcript level of AR was observed in the pituitary und testis , compared [0 brain and liver. Mature male goldfish showed a similar expression pattern to immature male goldfish. Interestingly. when compare to male goldfish, female goldfish showed AR mRNA expression that was found 10 be weak in pituitary, and very low expression in brain. They could not be found 10 have expression in any other tissues. Taken together. the- transcriptional analysis of AR depending on the tissue, sex. and maturity of a goldfish provides the opportunity for the study of goldfish reproductive physiology ,The results provided for the first time a comparison of the tissue distribution of AR mRNA in sexually maturating male and female goldfish.

Utilization of Substrate for the In vitro Lipid Synthesis in the Adipose Tissue of Hanwoo Steers

  • Song, M.K.;Sohn, H.J.;Hong, S.K.;Kim, H.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권11호
    • /
    • pp.1560-1563
    • /
    • 2001
  • An ability to utilize the substrates (acetate, glucose and lactate) in the lipid synthesis was measured in vitro with the adipose tissues of 4 locations (subcutaneous, SUBC; intramuscular, INTR; tail and kidney, KIDN) in 12 Hanwoo (Korean native cattle) steers (26 and 28 months of ages, mean body weight 638.6 kg). The rates of lipid synthesis from acetate were higher than those from glucose in SUBC and ITRA adipose tissues, respectively. In contrast, the rates of lipid synthesis from glucose were higher than those from acetate in the adipose tissues of tail and KIDN, respectively. Lactate utilization was lowest in all the locations while that of acetate or glucose had the different trends of utilization in the lipogenesis. The rate of lipid synthesis from acetate was highest in the SUBC adipose tissue but was lowest in the KIDN while that from glucose was also higher in the SUBC adipose tissue than in the other tissue locations. The rate of lipid synthesis from lactate, however, was highest in the tail adipose tissue among the locations.

Hippo Signaling Circuit and Divergent Tissue Growth in Mammalian Eye

  • Moon, Kyeong Hwan;Kim, Jin Woo
    • Molecules and Cells
    • /
    • 제41권4호
    • /
    • pp.257-263
    • /
    • 2018
  • Vertebrate organ development is accompanied by demarcation of tissue compartments, which grow coordinately with their neighbors. Hence, perturbing the coordinative growth of neighboring tissue compartments frequently results in organ malformation. The growth of tissue compartments is regulated by multiple intercellular and intracellular signaling pathways, including the Hippo signaling pathway that limits the growth of various organs. In the optic neuroepithelial continuum, which is partitioned into the retina, retinal pigment epithelium (RPE) and ciliary margin (CM) during eye development, the Hippo signaling activity operates differentially, as it does in many tissues. In this review, we summarize recent studies that have explored the relationship between the Hippo signaling pathway and growth of optic neuroepithelial compartments. We will focus particularly on the roles of a tumor suppressor, neurofibromin 2 (NF2), whose expression is not only dependent on compartment-specific transcription factors, but is also subject to regulation by a Hippo-Yap feedback signaling circuit.