• Title/Summary/Keyword: tip shape

Search Result 572, Processing Time 0.026 seconds

A Study on the Extraction of Nail's Region from PC-based Hand-Geometry Recognition System Using GA (GA를 이용한 PC 기반 Hand-Geometry 인식시스템의 Nail 영역 추출에 관한 연구)

  • Kim, Young-Tak;Kim, Soo-Jong;Park, Ju-Won;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.506-511
    • /
    • 2004
  • Biometrics is getting more and more attention in recent years for security and other concerns. So far, only fingerprint recognition has seen limited success for on-line security check, since other biometrics verification and identification systems require more complicated and expensive acquisition interfaces and recognition processes. Hand-Geometry has been used for biometric verification and identification because of its acquisition convenience and good performance for verification and identification performance. Hence, it can be a good candidate for online checks. Therefore, this paper proposes a Hand-Geometry recognition system based on geometrical features of hand. From anatomical point of view, human hand can be characterized by its length, width, thickness, geometrical composition, shapes of the palm, and shape and geometry of the fingers. This paper proposes thirty relevant features for a Hand-Geometry recognition system. However, during experimentation, it was discovered that length measured from the tip of the finger was not a reliable feature. Hence, we propose a new technique based on Genetic Algorithm for extraction of the center of nail bottom, in order to use it for the length feature.

Columellar reconstruction: a refinement of technique

  • Tzur, Rotem;Berezovsky, Alexander Bogdanov;Krieger, Yuval;Shoham, Yaron;Silberstein, Eldad
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.2
    • /
    • pp.148-151
    • /
    • 2018
  • The nose is an important landmark of the face and its shape and beauty is of significant concern. The columella is the subunit between the two nostrils that provides support and projection to the nasal tip and has functional role in nostrils, as well as aesthetic. Ethiology for columellar absence or deficiency is diverse, and it is one of the most complex nasal subunits to reconstruct because of its narrow horizontal dimension, its tenuous vascularity and limited availability of adjacent tissue. We present a patient with columellar, membranous septum and upper lip defect, due to oncological resection. The lip reconstruction was designed using advancement of two upper lip edges with the technique of webster perialar/nasocheek advancement. However, the perialar/nasocheek tissue which is usually discarded was used as inferiorly based skin flaps to reconstruct the membranous septum, columellar skin and nasal vestibule lining. Rib cage cartilage graft was used as columellar strut for support. At 1-year follow-up, the patient has good nasal contour and projection. Scaring of the columella is very subtle. This is a versatile way for successful reconstruction of a columella and large central facial defect in one-stage operation. It is a method which provides very satisfactory aesthetic result with minimum patient morbidity and discomfort.

Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD (수평축 조류발전용 로터 블레이드 형상설계 및 CFD에 의한 출력성능해석)

  • Jung, Ji Hyun;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.661-668
    • /
    • 2015
  • We present a design methodology for horizontal-axis tidal turbine blades based on blade element momentum theory, which has been used for aerodynamic design and power-performance analysis in the wind-energy industry. We design a 2-blade-type 1 MW HATT blade, which consists of a single airfoil (S814), and we present the detailed design parameters in this paper. Tidal turbine blades can experience cavitation problems at the blade-tip region, and this should be seriously considered during the early design stage. We perform computational fluid dynamics (CFD) simulations considering the cavitation model to predict the power performance and to investigate the flow characteristics of the blade. The maximum power coefficient is shown to be about 47 under the condition where TSR = 7, and we observed cavitation on the suction and pressure sides of the blade.

Effects of Geometric Parameters of a Bobsleigh on Aerodynamic Performance (봅슬레이의 형상변화가 공력성능에 미치는 영향)

  • Shim, Hyeon-Seok;Jung, Hyo-Yeon;Kim, Jun-Hee;Kim, Kwang-Yong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.233-240
    • /
    • 2015
  • Analysis of the aerodynamic performance of a bobsleigh has been performed for various types of bobsleigh body shape. To analyze the aerodynamic performance of the bobsleigh, three-dimensional Reynolds-averaged Navier-Stoke equations were used with the standard k-${\varepsilon}$ model as a turbulence closure. Grid structure was composed of unstructured tetrahedral grids. The radii of curvature of cowling, and height and length of front bumper at the tip on the drag coefficient were selected as geometric parameters. And, the effects of these parameters on the aerodynamic performance, i.e., the drag coefficient, were evaluated. The results shows that the aerodynamic performance is significantly affected by the height of front bumper and radius of curvature.

Characteristics of nanolithograpy process on polymer thin-film using near-field scanning optical microscope with a He-Cd laser (He-Cd 레이저와 근접장현미경을 이용한 폴리머박막 나노리소그라피 공정의 특성분석)

  • Kwon S. J.;Kim P. K.;Chun C. M.;Kim D. Y.;Chang W. S.;Jeong S. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.37-46
    • /
    • 2004
  • The shape and size variations of the nanopatterns produced on a polymer film using a near-field scanning optical microscope(NSOM) are investigated with respect to the process variables. A cantilever type nanoprobe having a 100nm aperture at the apex of the pyramidal tip is used with the NSOM and a He-Cd laser at a wavelength of 442nm as the illumination source. Patterning characteristics are examined for different laser beam power at the entrance side of the aperture($P_{in}$), scan speed of the piezo stage(V), repeated scanning over the same pattern, and operation modes of the NSOM(DC and AC modes). The pattern size remained almost the same for equal linear energy density. Pattern size decreased for lower laser beam power and greater scan speed, leading to a minimum pattern width of around 50nm at $P_{in}=1.2{\mu}W\;and\;V=12{\mu}m/s$. Direct writing of an arbitrary pattern with a line width of about 150nm was demonstrated to verify the feasibility of this technique for nanomask fabrication. Application on high-density data storage is discussed.

  • PDF

Phenomenology of nonlinear aeroelastic responses of highly deformable joined wings

  • Cavallaro, Rauno;Iannelli, Andrea;Demasi, Luciano;Razon, Alan M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.125-168
    • /
    • 2015
  • Dynamic aeroelastic behavior of structurally nonlinear Joined Wings is presented. Three configurations, two characterized by a different location of the joint and one presenting a direct connection between the two wings (SensorCraft-like layout) are investigated. The snap-divergence is studied from a dynamic perspective in order to assess the real response of the configuration. The investigations also focus on the flutter occurrence (critical state) and postcritical phenomena. Limit Cycle Oscillations (LCOs) are observed, possibly followed by a loss of periodicity of the solution as speed is further increased. In some cases, it is also possible to ascertain the presence of period doubling (flip-) bifurcations. Differences between flutter (Hopf's bifurcation) speed evaluated with linear and nonlinear analyses are discussed in depth in order to understand if a linear (and thus computationally less intense) representation provides an acceptable estimate of the instability properties. Both frequency- and time-domain approaches are compared. Moreover, aerodynamic solvers based on the potential flow are critically examined. In particular, it is assessed in what measure more sophisticated aerodynamic and interface models impact the aeroelastic predictions. When the use of the tools gives different results, a physical interpretation of the leading mechanism generating the mismatch is provided. In particular, for PrandtlPlane-like configurations the aeroelastic response is very sensitive to the wake's shape. As a consequence, it is suggested that a more sophisticate modeling of the wake positively impacts the reliability of aerodynamic and aeroelastic analysis. For SensorCraft-like configurations some LCOs are characterized by a non-synchronous motion of the inner and outer portion of the lower wing: the wing's tip exhibits a small oscillation during the descending or ascending phase, whereas the mid-span station describes a sinusoidal-like trajectory in the time-domain.

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF

Development of Sharpness Measuring Method for Glass Aggregate Particle made from Waste Glass Bottle

  • Sano, Shigeru;Yamada, Mari
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.76-79
    • /
    • 2001
  • In Japan in of today, there is no aspect in which the quantity of waste glass bottle discharged from ordinary homes decreases. Moreover, the kind of shape and color of the waste glass bottles are increasing little by little. In the recycling of the glass bottle, it becomes a problem that many kind of the color is abounding. It is possible to use the transparent glass bottle as raw material of the glassware. Since the reproduction of the color is difficult, the colored glass bottle is not possible to use as a raw material. Therefore, the processing of these glass bottles entirely depends on the reclamation. In Japan, the security of the new reclaimed land is very difficult for the reason of the environmental damage. Moreover, the life expectancy in many reclaimed lands is anticipated with within two years. Therefore, the development of the processing method of glass bottle other than reclamation becomes a rapid problem. At present it is examined that it is used of an aggregate of the colored pavement, as one of the application methods of colored glass bottle. The particle size of produced glass aggregate is also 5mm or less, because the thickness is 5mm or less on almost glass bottles. And almost glass particles have the sharp tip. The application as the aggregate is limited for this sharpness of the particle. This study was carried out for the purpose of the establishment of sharpness measuring method of the glass aggregate particle. It is possible that the injury degree to human in the handling is known, if showing the sharpness of the aggregate particle at the objective numerical value is possible. And the application of the glass aggregate is spread. In this research, the balloon fracture method was used for the sharpness measurement of the glass particle. This method is based on the completely new idea, and it is possible to express completely the possibility of injury to the human. It is reported with the detailed result in full paper, because this study is continuous in order to get the JIS which is industrial standard of Japan.

  • PDF

Gray Mold of Statice (Limonium shinuatum) Caused by Botrytis cinerea in Korea (Botrytis cinerea에 의한 스타티스 잿빛곰팡이병)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.10 no.2
    • /
    • pp.117-120
    • /
    • 2004
  • In April of 2003, the gray mold disease occurred severely on statice (Limonium shinuatum Mill. cv. Sophia) grown in the commerical farms in Seosang-myon, Hamyang-gun, Gyeongnam Province, Korea, 2003. The infected plants were started with water-soaking lesions in the stems, the leaves and the flowers became withered and discolored to gray or dark from the tip then gradually expanded to die. The conidia and mycelia of the pathogen appeared on flowers, leaves, calyx and flower stalk. The conidia were gray, I-celled, mostly ellipsoid or ovoid in shape and were 8∼20 x 6∼14 ${\mu}{\textrm}{m}$ in size. Conidiophores were 14∼34 ${\mu}{\textrm}{m}$ in size. The sclerotia were formed abundantly on potato-dextrose agar. The optimum temperature for sclerotial formation was 2$0^{\circ}C$. Pathogenicity of the causal organism was proved according to Koch's postulate. The causal organism was identified as Botrytis cinerea Persoon: Fries based on mycological characteristics. This is the first report on gray mold of statice (Limonium shinuatum) caused by Botrytis cinerea in Korea.

Effect of Preoperative Nasal Retainer on Nasal Growth in Patients with Bilateral Incomplete Cleft Lip: A 3-Year Follow-Up Study

  • Kim, Young Chul;Jeong, Woo Shik;Oh, Tae Suk;Choi, Jong Woo;Koh, Kyung S.
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.400-406
    • /
    • 2017
  • Background The purpose of this study was to evaluate changes in nasal growth after the implementation of a preoperative nasal retainer in patients with bilateral incomplete cleft lip. Methods Twenty-six infants with bilateral incomplete cleft lip and cleft palate were included in the study. A preoperative nasal retainer was applied in 5 patients from the time of birth to 2.6-3.5 months before primary cheiloplasty. Twenty-one patients who were treated without a preoperative nasal retainer were placed in the control group. Standard frontal, basal, and lateral view photographs were taken 3 weeks before cheiloplasty, immediately after cheiloplasty, and at the 1- and 3-year postoperative follow-up visits. The columella and nasal growth ratio and nasolabial angle were indirectly measured using photographic anthropometry. Results The ratio of columella length to nasal tip protrusion significantly increased after the implementation of a preoperative nasal retainer compared to the control group for up to 3 years postoperatively (P<0.01 for all time points). The ratios of nasal width to facial width, nasal width to intercanthal distance, columellar width to nasal width, and the nasolabial angle, for the two groups were not significantly different at any time point. Conclusions Implementation of a preoperative nasal retainer provided significant advantages for achieving columellar elongation for up to 3 years postoperatively. It is a simple, reasonable option for correcting nostril shape, preventing deformities, and guiding development of facial structures.